Your browser doesn't support javascript.
loading
Development and Validation of the American Heart Association's PREVENT Equations.
Khan, Sadiya S; Matsushita, Kunihiro; Sang, Yingying; Ballew, Shoshana H; Grams, Morgan E; Surapaneni, Aditya; Blaha, Michael J; Carson, April P; Chang, Alexander R; Ciemins, Elizabeth; Go, Alan S; Gutierrez, Orlando M; Hwang, Shih-Jen; Jassal, Simerjot K; Kovesdy, Csaba P; Lloyd-Jones, Donald M; Shlipak, Michael G; Palaniappan, Latha P; Sperling, Laurence; Virani, Salim S; Tuttle, Katherine; Neeland, Ian J; Chow, Sheryl L; Rangaswami, Janani; Pencina, Michael J; Ndumele, Chiadi E; Coresh, Josef.
  • Khan SS; Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.S.K.).
  • Matsushita K; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (K.M., Y.S., S.H.B., J.C.).
  • Sang Y; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (K.M., Y.S., S.H.B., J.C.).
  • Ballew SH; Department of Population Health, New York University Grossman School of Medicine, New York, NY (Y.S., S.H.B., J.C.).
  • Grams ME; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (K.M., Y.S., S.H.B., J.C.).
  • Surapaneni A; Department of Population Health, New York University Grossman School of Medicine, New York, NY (Y.S., S.H.B., J.C.).
  • Blaha MJ; Department of Medicine, Division of Precision Medicine, New York University Grossman School of Medicine, New York, NY (M.E.G., A.S.).
  • Carson AP; Department of Medicine, Division of Precision Medicine, New York University Grossman School of Medicine, New York, NY (M.E.G., A.S.).
  • Chang AR; Johns Hopkins Ciccarone Center for Prevention of Cardiovascular Disease, Baltimore, MD (M.J.B.).
  • Ciemins E; University of Mississippi Medical Center, Jackson (A.P.C.).
  • Go AS; Departments of Nephrology and Population Health Sciences, Geisinger Health, Danville, PA (A.R.C.).
  • Gutierrez OM; AMGA (American Medical Group Association), Alexandria, VA (E.C.).
  • Hwang SJ; Division of Research, Kaiser Permanente Northern California, Oakland; Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA; Departments of Epidemiology, Biostatistics and Medicine, University of California, San Francisco; Department of Medicine (N
  • Jassal SK; Departments of Epidemiology and Medicine, University of Alabama at Birmingham (O.M.G.).
  • Kovesdy CP; National Heart, Lung, and Blood Institute, Framingham, MA (S.-J.H.).
  • Lloyd-Jones DM; Division of General Internal Medicine, University of California, San Diego and VA San Diego Healthcare, CA (S.K.J.).
  • Shlipak MG; Medicine-Nephrology, Memphis Veterans Affairs Medical Center and University of Tennessee Health Science Center, Memphis (C.P.K.).
  • Palaniappan LP; Department of Preventive Medicine, Northwestern University, Chicago, IL (D.M.L.-J.).
  • Sperling L; Department of Medicine, Epidemiology, and Biostatistics, University of California, San Francisco, and San Francisco VA Medical Center (M.G.S.).
  • Virani SS; Center for Asian Health Research and Education and the Department of Medicine, Stanford University School of Medicine, CA (L.P.P.).
  • Tuttle K; Department of Cardiology, Emory University, Atlanta, GA (L.S.).
  • Neeland IJ; Department of Medicine, The Aga Khan University, Karachi, Pakistan; Texas Heart Institute and Baylor College of Medicine, Houston (S.S.V.).
  • Chow SL; Providence Medical Research Center, Providence Inland Northwest Health, Spokane, WA; Kidney Research Institute and Institute of Translational Health Sciences, University of Washington, Seattle (K.T.).
  • Rangaswami J; UH Center for Cardiovascular Prevention, Translational Science Unit, Center for Integrated and Novel Approaches in Vascular-Metabolic Disease (CINEMA), Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, OH (I.J.
  • Pencina MJ; Department of Pharmacy Practice and Administration, College of Pharmacy, Western University of Health Sciences, Pomona, CA (S.L.C.).
  • Ndumele CE; Washington DC VA Medical Center and George Washington University School of Medicine (J.R.).
  • Coresh J; Department of Biostatistics, Duke University Medical Center, Durham, NC (M.J.P.).
Circulation ; 149(6): 430-449, 2024 02 06.
Article en En | MEDLINE | ID: mdl-37947085
ABSTRACT

BACKGROUND:

Multivariable equations are recommended by primary prevention guidelines to assess absolute risk of cardiovascular disease (CVD). However, current equations have several limitations. Therefore, we developed and validated the American Heart Association Predicting Risk of CVD EVENTs (PREVENT) equations among US adults 30 to 79 years of age without known CVD.

METHODS:

The derivation sample included individual-level participant data from 25 data sets (N=3 281 919) between 1992 and 2017. The primary outcome was CVD (atherosclerotic CVD and heart failure). Predictors included traditional risk factors (smoking status, systolic blood pressure, cholesterol, antihypertensive or statin use, and diabetes) and estimated glomerular filtration rate. Models were sex-specific, race-free, developed on the age scale, and adjusted for competing risk of non-CVD death. Analyses were conducted in each data set and meta-analyzed. Discrimination was assessed using the Harrell C-statistic. Calibration was calculated as the slope of the observed versus predicted risk by decile. Additional equations to predict each CVD subtype (atherosclerotic CVD and heart failure) and include optional predictors (urine albumin-to-creatinine ratio and hemoglobin A1c), and social deprivation index were also developed. External validation was performed in 3 330 085 participants from 21 additional data sets.

RESULTS:

Among 6 612 004 adults included, mean±SD age was 53±12 years, and 56% were women. Over a mean±SD follow-up of 4.8±3.1 years, there were 211 515 incident total CVD events. The median C-statistics in external validation for CVD were 0.794 (interquartile interval, 0.763-0.809) in female and 0.757 (0.727-0.778) in male participants. The calibration slopes were 1.03 (interquartile interval, 0.81-1.16) and 0.94 (0.81-1.13) among female and male participants, respectively. Similar estimates for discrimination and calibration were observed for atherosclerotic CVD- and heart failure-specific models. The improvement in discrimination was small but statistically significant when urine albumin-to-creatinine ratio, hemoglobin A1c, and social deprivation index were added together to the base model to total CVD (ΔC-statistic [interquartile interval] 0.004 [0.004-0.005] and 0.005 [0.004-0.007] among female and male participants, respectively). Calibration improved significantly when the urine albumin-to-creatinine ratio was added to the base model among those with marked albuminuria (>300 mg/g; 1.05 [0.84-1.20] versus 1.39 [1.14-1.65]; P=0.01).

CONCLUSIONS:

PREVENT equations accurately and precisely predicted risk for incident CVD and CVD subtypes in a large, diverse, and contemporary sample of US adults by using routinely available clinical variables.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Enfermedades Cardiovasculares / Aterosclerosis / Insuficiencia Cardíaca Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Enfermedades Cardiovasculares / Aterosclerosis / Insuficiencia Cardíaca Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Año: 2024 Tipo del documento: Article