Your browser doesn't support javascript.
loading
Deciphering microbiomes dozens of meters under our feet and their edaphoclimatic and spatial drivers.
He, Haoran; Zhou, Jingxiong; Wang, Yunqiang; Jiao, Shuo; Qian, Xun; Liu, Yurong; Liu, Ji; Chen, Ji; Delgado-Baquerizo, Manuel; Brangarí, Albert C; Chen, Li; Cui, Yongxing; Pan, Haibo; Tian, Renmao; Liang, Yuting; Tan, Wenfeng; Ochoa-Hueso, Raúl; Fang, Linchuan.
  • He H; College of Natural Resources and Environment, Northwest A&F University, Yangling, China.
  • Zhou J; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China.
  • Wang Y; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China.
  • Jiao S; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China.
  • Qian X; Department of Earth and Environmental Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
  • Liu Y; State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
  • Liu J; College of Natural Resources and Environment, Northwest A&F University, Yangling, China.
  • Chen J; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
  • Delgado-Baquerizo M; Hubei Province Key Laboratory for Geographical Process Analysis and Simulation, Central China Normal University, Wuhan, China.
  • Brangarí AC; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China.
  • Chen L; Department of Agroecology, Aarhus University, Tjele, Denmark.
  • Cui Y; Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain.
  • Pan H; Institute for Physical Geography and Ecosystem Science, Lund University, Lund, Sweden.
  • Tian R; College of Natural Resources and Environment, Northwest A&F University, Yangling, China.
  • Liang Y; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China.
  • Tan W; Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.
  • Ochoa-Hueso R; State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
  • Fang L; Institute for Food Safety and Health (IFSH), Illinois Institute of Technology, Bedford Park, Illinois, USA.
Glob Chang Biol ; 30(1): e17028, 2024 Jan.
Article en En | MEDLINE | ID: mdl-37955302
Microbes inhabiting deep soil layers are known to be different from their counterpart in topsoil yet remain under investigation in terms of their structure, function, and how their diversity is shaped. The microbiome of deep soils (>1 m) is expected to be relatively stable and highly independent from climatic conditions. Much less is known, however, on how these microbial communities vary along climate gradients. Here, we used amplicon sequencing to investigate bacteria, archaea, and fungi along fifteen 18-m depth profiles at 20-50-cm intervals across contrasting aridity conditions in semi-arid forest ecosystems of China's Loess Plateau. Our results showed that bacterial and fungal α diversity and bacterial and archaeal community similarity declined dramatically in topsoil and remained relatively stable in deep soil. Nevertheless, deep soil microbiome still showed the functional potential of N cycling, plant-derived organic matter degradation, resource exchange, and water coordination. The deep soil microbiome had closer taxa-taxa and bacteria-fungi associations and more influence of dispersal limitation than topsoil microbiome. Geographic distance was more influential in deep soil bacteria and archaea than in topsoil. We further showed that aridity was negatively correlated with deep-soil archaeal and fungal richness, archaeal community similarity, relative abundance of plant saprotroph, and bacteria-fungi associations, but increased the relative abundance of aerobic ammonia oxidation, manganese oxidation, and arbuscular mycorrhizal in the deep soils. Root depth, complexity, soil volumetric moisture, and clay play bridging roles in the indirect effects of aridity on microbes in deep soils. Our work indicates that, even microbial communities and nutrient cycling in deep soil are susceptible to changes in water availability, with consequences for understanding the sustainability of dryland ecosystems and the whole-soil in response to aridification. Moreover, we propose that neglecting soil depth may underestimate the role of soil moisture in dryland ecosystems under future climate scenarios.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Bacterias / Microbiota Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Bacterias / Microbiota Idioma: En Año: 2024 Tipo del documento: Article