Your browser doesn't support javascript.
loading
Superior Auto-Identification of Trypanosome Parasites by Using a Hybrid Deep-Learning Model.
Kittichai, Veerayuth; Kaewthamasorn, Morakot; Thanee, Suchansa; Sasisaowapak, Thanyathep; Naing, Kaung Myat; Jomtarak, Rangsan; Tongloy, Teerawat; Chuwongin, Santhad; Boonsang, Siridech.
  • Kittichai V; Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang; Veerayuth.ki@kmitl.ac.th.
  • Kaewthamasorn M; Veterinary Parasitology Research Unit, Faculty of Veterinary Science, Chulalongkorn University.
  • Thanee S; Veterinary Parasitology Research Unit, Faculty of Veterinary Science, Chulalongkorn University.
  • Sasisaowapak T; College of Advanced Manufacturing Innovation, King Mongkut's Institute of Technology Ladkrabang.
  • Naing KM; College of Advanced Manufacturing Innovation, King Mongkut's Institute of Technology Ladkrabang.
  • Jomtarak R; Faculty of Science and Technology, Suan Dusit University.
  • Tongloy T; College of Advanced Manufacturing Innovation, King Mongkut's Institute of Technology Ladkrabang.
  • Chuwongin S; College of Advanced Manufacturing Innovation, King Mongkut's Institute of Technology Ladkrabang.
  • Boonsang S; Department of Electrical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang; siridech.bo@kmitl.ac.th.
J Vis Exp ; (200)2023 Oct 27.
Article en En | MEDLINE | ID: mdl-37955392
Trypanosomiasis is a significant public health problem in several regions across the world, including South Asia and Southeast Asia. The identification of hotspot areas under active surveillance is a fundamental procedure for controlling disease transmission. Microscopic examination is a commonly used diagnostic method. It is, nevertheless, primarily reliant on skilled and experienced personnel. To address this issue, an artificial intelligence (AI) program was introduced that makes use of a hybrid deep learning technique of object identification and object classification neural network backbones on the in-house low-code AI platform (CiRA CORE). The program can identify and classify the protozoan trypanosome species, namely Trypanosoma cruzi, T. brucei, and T. evansi, from oil-immersion microscopic images. The AI program utilizes pattern recognition to observe and analyze multiple protozoa within a single blood sample and highlights the nucleus and kinetoplast of each parasite as specific characteristic features using an attention map. To assess the AI program's performance, two unique modules are created that provide a variety of statistical measures such as accuracy, recall, specificity, precision, F1 score, misclassification rate, receiver operating characteristics (ROC) curves, and precision versus recall (PR) curves. The assessment findings show that the AI algorithm is effective at identifying and categorizing parasites. By delivering a speedy, automated, and accurate screening tool, this technology has the potential to transform disease surveillance and control. It could also assist local officials in making more informed decisions on disease transmission-blocking strategies.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Parásitos / Trypanosoma / Aprendizaje Profundo Límite: Animals Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Parásitos / Trypanosoma / Aprendizaje Profundo Límite: Animals Idioma: En Año: 2023 Tipo del documento: Article