Your browser doesn't support javascript.
loading
Modeling of a spatially resolved ion temperature diagnostic for inertial confinement fusion.
Danly, C R; Birge, N; Geppert-Kleinrath, V; Haines, B M; Ivancic, S; Jorgenson, H J; Katz, J; Merrill, F E; Mendoza, E F; Sorce, A; Tafoya, L R; Volegov, P L; Wilde, C H; Wilson, D C.
  • Danly CR; Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Birge N; Department of Physics and Astronomy, University of Rochester, Rochester, New York 14620, USA.
  • Geppert-Kleinrath V; Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Haines BM; Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Ivancic S; Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Jorgenson HJ; Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14620, USA.
  • Katz J; Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Merrill FE; Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14620, USA.
  • Mendoza EF; Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Sorce A; Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Tafoya LR; Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14620, USA.
  • Volegov PL; Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Wilde CH; Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Wilson DC; Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Article en En | MEDLINE | ID: mdl-38081238
ABSTRACT
The performance of modern laser-driven inertial confinement fusion (ICF) experiments is degraded by contamination of the deuterium-tritium (DT) fuel with high-Z material during compression. Simulations suggest that this mix can be described by the ion temperature distribution of the implosion, given that such contaminants deviate in temperature from the surrounding DT plasma. However, existing neutron time-of-flight (nTOF) diagnostics only measure the spatially integrated ion temperature. This paper describes the techniques and forward modeling used to develop a novel diagnostic imaging system to measure the spatially resolved ion temperature of an ICF implosion for the first time. The technique combines methods in neutron imaging and nTOF diagnostics to measure the ion temperature along one spatial dimension at yields currently achievable on the OMEGA laser. A detailed forward model of the source and imaging system was developed to guide instrument design. The model leverages neutron imaging reconstruction algorithms, radiation hydrodynamics and Monte Carlo simulations, optical ray tracing, and more. The results of the forward model agree with the data collected on OMEGA using the completed diagnostic. The analysis of the experimental data is still ongoing and will be discussed in a separate publication.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2023 Tipo del documento: Article