Your browser doesn't support javascript.
loading
Astragaloside IV-induced BMSC exosomes promote neovascularization and protect cardiac function in myocardial infarction mice via the miR-411/HIF-1α axis.
Yang, Lei; Liu, Nuan; Yang, Yang.
  • Yang L; School of Medicine, Zhumadian Key Laboratory of Chronic Disease Research and Translational Medicine, Huanghuai University, Zhumadian, People's Republic of China.
  • Liu N; Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian, People's Republic of China.
  • Yang Y; School of Medicine, Zhumadian Key Laboratory of Chronic Disease Research and Translational Medicine, Huanghuai University, Zhumadian, People's Republic of China.
J Liposome Res ; : 1-12, 2023 Dec 13.
Article en En | MEDLINE | ID: mdl-38088046
ABSTRACT
This study focused on investigating the mechanism of the astragaloside IV-induced bone marrow mesenchymal stem cell exosome (AS-IV-MSC-exo)/microRNA(miR)-411/HIF-1α axis in affecting vascular neovascularization and protecting cardiac function in myocardial infarction (MI) mice. Exosomes (MSC-exo and AS-IV-MSC-exo) were separated by differential centrifugation and then characterized. MI mouse models were established by left anterior descending coronary artery ligation. Echocardiography was used to evaluate cardiac function. HE staining and Masson staining were performed to observe myocardial histopathology. Capillary density in the myocardium via immunohistochemistry and quantified the expression of vascular endothelial growth factor (VEGF) via RT-qPCR. The expression of miR-411 and HIF-1α was tested by RT-qPCR and western blot and the targeting relationship of miR-411 and HIF-1α was verified by bioinformatics website and dual luciferase reporter gene assay. Exosomes with lipid bi-layer membrane structure, expressing exosomal surface marker proteins, and being taken up by cardiomyocytes could be successfully isolated utilizing ultracentrifugation. Intramyocardial injection of MSC-exo could restore cardiac function, decrease myocardial pathological changes and collagen deposition, and promote neovascularization in MI mice; the effect of AS-IV-MSC-exo was more significant. The ability of AS-IV-MSC-exo to restore cardiac function, lower myocardial pathological changes and collagen deposition, and promote neovascularization in MI mice was diminished when miR-411 expression in AS-IV-MSC-exo was reduced. Mechanistically, miR-411 was found to target and inhibit HIF-1α expression. Overexpression of HIF-1α impaired the impact of AS-IV-MSC-exo on improving cardiac function and promoting neovascularization in MI mice. AS-IV-MSC-exo improves cardiac function and promoted neovascularization via the miR-411/HIF-1α axis, thereby ameliorating MI.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2023 Tipo del documento: Article