Your browser doesn't support javascript.
loading
A mixture model for differentiating longitudinal courses of multiple sclerosis.
Menezes, Felipe Toscano Lins de; Lopes, Alexandre Bussinger; Alencar, Jéssica Monique Dias; Bichuetti, Denis Bernardi; Souza, Nilton Amorim de; Cogo-Moreira, Hugo; Oliveira, Enedina Maria Lobato de.
  • Menezes FTL; Neuroimmunology Clinic, Disciplina de Neurologia, Escola Paulista de Medicina - Universidade Federal de São Paulo, Sao Paulo, Brazil. Electronic address: felipe.toscano@unifesp.br.
  • Lopes AB; Neuroimmunology Clinic, Disciplina de Neurologia, Escola Paulista de Medicina - Universidade Federal de São Paulo, Sao Paulo, Brazil.
  • Alencar JMD; Neuroimmunology Clinic, Disciplina de Neurologia, Escola Paulista de Medicina - Universidade Federal de São Paulo, Sao Paulo, Brazil.
  • Bichuetti DB; Neuroimmunology Clinic, Disciplina de Neurologia, Escola Paulista de Medicina - Universidade Federal de São Paulo, Sao Paulo, Brazil.
  • Souza NA; Neuroimmunology Clinic, Disciplina de Neurologia, Escola Paulista de Medicina - Universidade Federal de São Paulo, Sao Paulo, Brazil.
  • Cogo-Moreira H; Department of Education, ICT and Learning, Østfold University College, Halden, Norway.
  • Oliveira EML; Neuroimmunology Clinic, Disciplina de Neurologia, Escola Paulista de Medicina - Universidade Federal de São Paulo, Sao Paulo, Brazil.
Mult Scler Relat Disord ; 81: 105346, 2024 Jan.
Article en En | MEDLINE | ID: mdl-38091806
BACKGROUND: Multiple sclerosis has a broad spectrum of clinical courses. Early identification of patients at greater risk of accumulating disability is essential. OBJECTIVES: Identify groups of patients with similar presentation through a mixture model and predict their trajectories over the years. METHODS: Retrospective study of patients from 1994 to 2019. We performed a latent profile analysis followed by a latent transition analysis based on eight parameters: age, disease duration, EDSS, number of relapses, multi-topographic symptoms, motor impairment, sphincter impairment, and infratentorial lesions. RESULTS: We included 629 patients, regardless of the phenotypical classification. We identified three distinct groups at the beginning and end of the follow-up. The three-classes model disclosed the "No disability regardless disease duration" (NDRDD) class with low EDSS and younger patients, the "Disability within a short disease duration" (DSDD) class with the worse disability besides short illness, and the "Disability within a long disease duration" (DLDD) class that achieved high EDSS over a long disease duration. EDSS, disease duration, and no sphincter impairment had the best entropy to distinguish classes at the initial presentation. Over time, the patients from NDRDD had a 52.1 % probability of changing to DLDD and 7.7 % of changing to DSDD. CONCLUSIONS: We identified three groups of clinical presentations and their evolution over time based on considered prognostic factors. The most likely transition is from NDRDD to DLDD.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Personas con Discapacidad / Esclerosis Múltiple Recurrente-Remitente / Esclerosis Múltiple Límite: Humans Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Personas con Discapacidad / Esclerosis Múltiple Recurrente-Remitente / Esclerosis Múltiple Límite: Humans Idioma: En Año: 2024 Tipo del documento: Article