Your browser doesn't support javascript.
loading
LncRNA STAT3-AS regulates endometrial receptivity via the STAT3 signaling pathway.
Jia, Yanni; Wang, Wei; Jiang, Jiaqi; Zhang, Xinyan; Li, Haijing; Gong, Suhua; Li, Zuhui; Liu, Haokun; Shang, Chunmei; Wang, Aihua; Jin, Yaping; Lin, Pengfei.
  • Jia Y; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China.
  • Wang W; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
  • Jiang J; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China.
  • Zhang X; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China.
  • Li H; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China.
  • Gong S; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China.
  • Li Z; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China.
  • Liu H; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China.
  • Shang C; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China.
  • Wang A; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China.
  • Jin Y; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China. Electronic address: yapingjin@163.com.
  • Lin P; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China. Electronic address: linpengfei@nwsuaf.edu.cn.
Theriogenology ; 216: 118-126, 2024 Mar 01.
Article en En | MEDLINE | ID: mdl-38171198
ABSTRACT
Endometrial receptivity is critical for the successful establishment of pregnancy in ruminants. Interferon tau (IFNT) plays a key role in promoting embryo attachment by activating the Janus kinase/signal transducer and activator of transcription pathway, which induces the expression of a series of interferon-stimulated genes (ISGs). In our previous study, sequencing analysis of goat endometrial epithelial cells (gEECs) treated with 20 ng/mL IFNT revealed a differentially expressed long non-coding RNA located on the STAT3 antisense chain, which we designated STAT3-AS. The aim of this study was to investigate the role and mechanism of STAT3-AS in establishing endometrial receptivity in goats. The results showed that STAT3-AS was expressed in both the nucleus and cytoplasm of gEECs, and its expression increased significantly in the uterus on day 15 of pregnancy. STAT3-AS expression was upregulated in gEECs treated with IFNT alone or in combination with progesterone and estradiol. Knockdown of STAT3-AS using specific short interfering RNA significantly inhibited the expression of classical ISGs such as interferon-stimulated gene 15 and 2',5'-oligodenylate synthetase 2, as well as uterine endometrial receptivity-related genes including homeobox gene A11, integrin beta 3, and vascular endothelial growth factor. Moreover, gEEC proliferation and the STAT3 pathway were suppressed in the absence of STAT3-AS. However, pretreatment with the STAT3 activator RO8191 restored the effect of silencing STAT3-AS on endometrial receptivity. Overall, these results suggest that STAT3-AS is an important regulator of endometrial receptivity in goats and that it regulates endometrial receptivity through the STAT3 pathway.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: ARN Largo no Codificante Límite: Animals / Pregnancy Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: ARN Largo no Codificante Límite: Animals / Pregnancy Idioma: En Año: 2024 Tipo del documento: Article