Your browser doesn't support javascript.
loading
Dipeniroqueforins A-B and Peniroqueforin D: Eremophilane-Type Sesquiterpenoid Derivatives with Cytotoxic Activity from Penicillium roqueforti.
Mo, Shuyuan; Zhang, Yaxin; Jiang, Rui; Zeng, Hanxiao; Huang, Zhihong; Yin, Jie; Zhang, Sitian; Yao, Jun; Wang, Jianping; Hu, Zhengxi; Zhang, Yonghui.
  • Mo S; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
  • Zhang Y; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
  • Jiang R; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
  • Zeng H; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
  • Huang Z; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
  • Yin J; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
  • Zhang S; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
  • Yao J; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
  • Wang J; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
  • Hu Z; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
  • Zhang Y; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
J Org Chem ; 89(2): 1209-1219, 2024 01 19.
Article en En | MEDLINE | ID: mdl-38192075
ABSTRACT
Guided by the Global Natural Products Social (GNPS) molecular networking strategy, five undescribed eremophilane-type sesquiterpenoid derivatives (1-5) were isolated and identified from fungus Penicillium roqueforti, which was separated from the root soil of plant Hypericum beanii collected in Shennongjia Forestry District, Hubei Province. Dipeniroqueforins A-B (1-2), representing a lactam-type sesquiterpenoid skeleton with a highly symmetrical and homodimeric 5/6/6-6/6/5 hexacyclic system, are reported within the eremophilane-type family for the first time. Peniroqueforin D (5) represents the first example of a 1,2-seco eremophilane-type sesquiterpenoid derivative featuring an undescribed 7/6-fused ring system. The structures of these compounds were elucidated by various spectroscopic analyses, DP4+ probability analyses, ECD calculations, and single-crystal X-ray diffraction experiments. Furthermore, these isolates were evaluated for cytotoxicity, and the result uncovered that compound 1 displayed broad-spectrum activity. Further mechanistic study revealed that compound 1 could significantly upregulate the mRNA expression of genes related to the oxidative induction, leading to the abnormal ROS levels in tumor cells and ultimately causing tumor cell apoptosis.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Penicillium / Sesquiterpenos / Antineoplásicos Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Penicillium / Sesquiterpenos / Antineoplásicos Idioma: En Año: 2024 Tipo del documento: Article