Your browser doesn't support javascript.
loading
Magnetism and metallicity in moiré transition metal dichalcogenides.
Tscheppe, Patrick; Zang, Jiawei; Klett, Marcel; Karakuzu, Seher; Celarier, Armelle; Cheng, Zhengqian; Marianetti, Chris A; Maier, Thomas A; Ferrero, Michel; Millis, Andrew J; Schäfer, Thomas.
  • Tscheppe P; Independent Research Group, Max-Planck-Institut für Festkörperforschung, Stuttgart 70569, Germany.
  • Zang J; Institut für Theoretische Physik and Center for Quantum Science, Universität Tübingen, Tübingen 72076, Germany.
  • Klett M; Department of Physics, Columbia University, New York, NY 10027.
  • Karakuzu S; Independent Research Group, Max-Planck-Institut für Festkörperforschung, Stuttgart 70569, Germany.
  • Celarier A; Center for Computational Quantum Physics, Flatiron Institute, New York, NY 10010.
  • Cheng Z; CPHT, CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau 91128, France.
  • Marianetti CA; Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027.
  • Maier TA; Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027.
  • Ferrero M; Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6164.
  • Millis AJ; CPHT, CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau 91128, France.
  • Schäfer T; Collège de France, Paris 75005, France.
Proc Natl Acad Sci U S A ; 121(3): e2311486121, 2024 Jan 16.
Article en En | MEDLINE | ID: mdl-38207078
ABSTRACT
The ability to control the properties of twisted bilayer transition metal dichalcogenides in situ makes them an ideal platform for investigating the interplay of strong correlations and geometric frustration. Of particular interest are the low energy scales, which make it possible to experimentally access both temperature and magnetic fields that are of the order of the bandwidth or the correlation scale. In this manuscript, we analyze the moiré Hubbard model, believed to describe the low energy physics of an important subclass of the twisted bilayer compounds. We establish its magnetic and the metal-insulator phase diagram for the full range of magnetic fields up to the fully spin-polarized state. We find a rich phase diagram including fully and partially polarized insulating and metallic phases of which we determine the interplay of magnetic order, Zeeman-field, and metallicity, and make connection to recent experiments.
Palabras clave