Your browser doesn't support javascript.
loading
MicroRNA-encoded regulatory peptides modulate cadmium tolerance and accumulation in rice.
Lu, Long; Chen, Xinyu; Chen, Jiaming; Zhang, Zaoli; Zhang, Zhen; Sun, Yanyan; Wang, Yuan; Xie, Siwen; Ma, Yinuo; Song, Yuanyuan; Zeng, Rensen.
  • Lu L; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China.
  • Chen X; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Biotechnology of Fujian Higher Education Institutes, Fujian Agriculture and Forestry University, Fuzhou, China.
  • Chen J; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China.
  • Zhang Z; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China.
  • Zhang Z; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China.
  • Sun Y; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China.
  • Wang Y; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China.
  • Xie S; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China.
  • Ma Y; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China.
  • Song Y; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China.
  • Zeng R; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China.
Plant Cell Environ ; 47(5): 1452-1470, 2024 May.
Article en En | MEDLINE | ID: mdl-38233741
ABSTRACT
MicroRNAs (miRNAs) are small noncoding RNAs that play a vital role in plant responses to abiotic and biotic stresses. Recently, it has been discovered that some primary miRNAs (pri-miRNAs) encode regulatory short peptides called miPEPs. However, the presence of miPEPs in rice, and their functions in response to abiotic stresses, particularly stress induced by heavy metals, remain poorly understood. Here, we identified a functional small peptide (miPEP156e) encoded by pri-miR156e that regulates the expression of miR156 and its target SPL genes, thereby affecting miR156-mediated cadmium (Cd) tolerance in rice. Overexpression of miPEP156e led to decreased uptake and accumulation of Cd and reactive oxygen species (ROS) levels in plants under Cd stress, resulting in improved rice Cd tolerance, as observed in miR156-overexpressing lines. Conversely, miPEP156e mutants displayed sensitivity to Cd stress due to the elevated accumulation of Cd and ROS. Transcriptome analysis further revealed that miPEP156e improved rice Cd tolerance by modulating Cd transporter genes and ROS scavenging genes. Our study provides insights into the regulatory mechanism of miPEP156e in rice response to Cd stress and demonstrates the potential of miPEPs as an effective tool for improving crop abiotic stress tolerance.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Oryza / MicroARNs Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Oryza / MicroARNs Idioma: En Año: 2024 Tipo del documento: Article