Ferrostatin-1 inhibits ferroptosis of vascular smooth muscle cells and alleviates abdominal aortic aneurysm formation through activating the SLC7A11/GPX4 axis.
FASEB J
; 38(2): e23401, 2024 01 31.
Article
en En
| MEDLINE
| ID: mdl-38236196
ABSTRACT
Ferroptosis, a type of iron-catalyzed necrosis, is responsible for vascular smooth muscle cell (VSMC) death and serves as a potential therapeutic target for alleviating aortic aneurysm. Here, our study explored the underlying mechanism of ferroptosis affecting VSMC functions and the resultant formation of AAA using its inhibitor Ferrostatin-1 (Fer-1). Microarray-based gene expression profiling was employed to identify differentially expressed genes related to AAA and ferroptosis. An AAA model was established by angiotensin II (Ang II) induction in apolipoprotein E-knockout (ApoE-/- ) mice, followed by injection of Fer-1 and RSL-3 (ferroptosis inducer). Then, the role of Fer-1 and RSL-3 in the ferroptosis of VSMCs and AAA formation was analyzed in Ang II-induced mice. Primary mouse VSMCs were cultured in vitro and treated with Ang II, Fer-1, sh-SLC7A11, or sh-GPX4 to assess the effect of Fer-1 via the SLC7A11/GPX axis. Bioinformatics analysis revealed that GPX4 was involved in the fibrosis formation of AAA, and there was an interaction between SLC7A11 and GPX4. In vitro assays showed that Fer-1 alleviated Ang II-induced ferroptosis of VSMCs and retard the consequent AAA formation. The mechanism was associated with activation of the SLC7A11/GPX4 pathway. Silencing of SLC7A11 or GPX4 could inhibit the ameliorating effect of Fer-1 on the ferroptosis of VSMCs. In vivo animal studies further demonstrated that Fer-1 inhibited Ang II-induced ferroptosis and vessel wall structural abnormalities in AAA mouse through activation of the SLC7A11/GPX4 pathway. Fer-1 may prevent AAA formation through activation of the SLC7A11/GPX4 pathway.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Fenilendiaminas
/
Aneurisma de la Aorta Abdominal
/
Hormonas Peptídicas
/
Ferroptosis
Límite:
Animals
Idioma:
En
Año:
2024
Tipo del documento:
Article