Your browser doesn't support javascript.
loading
Establishment and Validation of a Four-stress Granule-related Gene Signature in Hepatocellular Carcinoma.
Li, Mengzhu; Fan, Xiude; Zhao, Jiajun; Wang, Dawei.
  • Li M; Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
  • Fan X; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
  • Zhao J; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China.
  • Wang D; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China.
J Clin Transl Hepatol ; 12(1): 1-14, 2024 Jan 28.
Article en En | MEDLINE | ID: mdl-38250470
ABSTRACT
Background and

Aims:

Stress granules (SGs) as membrane-less cytoplasmic foci formed in response to unfavorable external stimuli could promote cancer cells to adapt to hostile environments. Hepatocellular carcinoma (HCC) is prone to be highly aggressive once diagnosed, which markedly reduces patient survival time. Therefore, it is crucial to develop valid diagnostic markers to prognosticate HCC patient prognosis, which promotes individualized precision therapeutics in HCC. Considering the pro-tumorigenic activity of SGs, it is of great potential value to construct a prognostic tool for HCC based on the expression profiles of SG-related genes (SGGs).

Methods:

Bioinformatic analysis was employed to establish an SGG-based prognostic signature. Western blotting and real-time polymerase chain reaction assays were used to assess the expression patterns of the related SGGs. Loss-of-function experiments were performed to analyze the effect of the SGGs on SG formation and cell survival.

Results:

A four-SGG signature (KPNA2, MEX3A, WDR62, and SFN) targeting HCC was established and validated to exhibit a robust performance in predicting HCC prognosis. Consistently, all four genes were further found to be highly expressed in human HCC tissues. More important, we demonstrated that individually knocking down the four SGGs significantly reduced HCC cell proliferation and metastasis by compromising the SG formation process.

Conclusions:

We developed an SGG-based predictive signature that can be used as an independent prognostic tool for HCC. The strong predictive power of this signature was further elucidated by the carcinogenic activity of KPNA2, MEX3A, WDR62, and SFN in HCC cells by regulating SG formation.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Año: 2024 Tipo del documento: Article