Your browser doesn't support javascript.
loading
Monometallic Ultrasmall Nanocatalysts via Different Valence Atomic Interfaces Boost Hydrogen Evolution Catalysis.
Yin, Jiao; Shi, Yue; Zhang, Dan; Liu, Pengfei; Zhang, Yan; Xu, Wenxia; Li, Guangjiu; Zhan, Tianrong; Lai, Jianping; Wang, Lei.
  • Yin J; State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R.
  • Shi Y; State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R.
  • Zhang D; Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
  • Liu P; State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R.
  • Zhang Y; State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R.
  • Xu W; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
  • Li G; State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R.
  • Zhan T; State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R.
  • Lai J; State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R.
  • Wang L; State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R.
Inorg Chem ; 63(6): 3137-3144, 2024 Feb 12.
Article en En | MEDLINE | ID: mdl-38277129
ABSTRACT
Synergistic monometallic nanocatalysts have attracted much attention due to their high intrinsic activity properties. However, current synergistic monometallic nanocatalysts tend to suffer from long reaction paths due to restricted nanoscale interfaces. In this paper, we synthesized the interstitial compound N-Pt/CNT with monometallic atomic interfaces. The catalysts are enriched with atomic interfaces between higher valence Ptδ+ and Pt0, allowing the reaction to proceed synergistically within the same component with an ideal reaction pathway. Through ratio optimization, N2.42-Pt/CNT with a suitable ratio of Ptδ+ and Pt0 is synthesized. And the calculated turnover frequency of N2.42-Pt/CNT is about 37.4 s-1 (-0.1 V vs reversible hydrogen electrode (RHE)), six times higher than that of the commercial Pt/C (6.58 s-1), which is the most intrinsically active of the Pt-based catalysts. Moreover, prepared N2.42-Pt/CNT exhibits excellent stability during the chronoamperometry tests of 200 h. With insights from comprehensive experiments and theoretical calculations, Pt with different valence states in monometallic atomic interfaces synergistically accelerates the H2O dissociation step and optimizes the Gibbs free energy of H* adsorption. And the existence of desirable hydrogen transfer paths substantially facilitates hydrogen evolution reaction kinetics.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article