Your browser doesn't support javascript.
loading
Engineering Co-N-Cr Cross-Interfacial Electron Bridges to Break Activity-Stability Trade-Off for Superdurable Bifunctional Single Atom Oxygen Electrocatalysts.
Zhang, Yun-Long; Liu, Bo; Dai, Yun-Kun; Shen, Li-Xiao; Guo, Pan; Xia, Yun-Fei; Zhang, Ziyu; Kong, Fantao; Zhao, Lei; Wang, Zhen-Bo.
  • Zhang YL; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China.
  • Liu B; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China.
  • Dai YK; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China.
  • Shen LX; College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, Guangdong, China.
  • Guo P; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China.
  • Xia YF; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China.
  • Zhang Z; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China.
  • Kong F; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China.
  • Zhao L; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China.
  • Wang ZB; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China.
Angew Chem Int Ed Engl ; 63(15): e202400577, 2024 Apr 08.
Article en En | MEDLINE | ID: mdl-38284909
ABSTRACT
Atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts have exhibited encouraging oxygen reduction reaction (ORR) activity. Nevertheless, the insufficient long-term stability remains a widespread concern owing to the inevitable 2-electron byproducts, H2O2. Here, we construct Co-N-Cr cross-interfacial electron bridges (CIEBs) via the interfacial electronic coupling between Cr2O3 and Co-N-C, breaking the activity-stability trade-off. The partially occupied Cr 3d-orbitals of Co-N-Cr CIEBs induce the electron rearrangement of CoN4 sites, lowering the Co-OOH* antibonding orbital occupancy and accelerating the adsorption of intermediates. Consequently, the Co-N-Cr CIEBs suppress the two-electron ORR process and approach the apex of Sabatier volcano plot for four-electron pathway simultaneously. As a proof-of-concept, the Co-N-Cr CIEBs is synthesized by the molten salt template method, exhibiting dominant 4-electron selectively and extremely low H2O2 yield confirmed by Damjanovic kinetic analysis. The Co-N-Cr CIEBs demonstrates impressive bifunctional oxygen catalytic activity (▵E=0.70 V) and breakthrough durability including 100 % current retention after 10 h continuous operation and cycling performance over 1500 h for Zn-air battery. The hybrid interfacial configuration and the understanding of the electronic coupling mechanism reported here could shed new light on the design of superdurable M-N-C catalysts.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article