Your browser doesn't support javascript.
loading
Crosstalk between endothelial cells with a non-canonical EndoMT phenotype and cardiomyocytes/fibroblasts via IGFBP5 aggravates TAC-induced cardiac dysfunction.
Li, Yue; Ni, Shi-Hao; Liu, Xin; Sun, Shu-Ning; Ling, Gui-Chen; Deng, Jian-Ping; Ou-Yang, Xiao-Lu; Huang, Yu-Sheng; Li, Huan; Chen, Zi-Xin; Huang, Xiu-Fang; Xian, Shao-Xiang; Yang, Zhong-Qi; Wang, Ling-Jun; Wu, Hong-Yan; Lu, Lu.
  • Li Y; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shenzhen Luohu Hospital of Traditional Chinese Medicine, Shenzhen, 518000, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure
  • Ni SH; Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China.
  • Liu X; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
  • Sun SN; Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China.
  • Ling GC; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
  • Deng JP; Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China.
  • Ou-Yang XL; Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China.
  • Huang YS; Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China.
  • Li H; Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China.
  • Chen ZX; Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China.
  • Huang XF; Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China.
  • Xian SX; Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China.
  • Yang ZQ; Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China.
  • Wang LJ; Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China. Electronic address: sm
  • Wu HY; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shenzhen Luohu Hospital of Traditional Chinese Medicine, Shenzhen, 518000, China. Electronic address: wu.hy@163.com.
  • Lu L; Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China. Electronic address: co
Eur J Pharmacol ; 966: 176378, 2024 Mar 05.
Article en En | MEDLINE | ID: mdl-38309679
ABSTRACT
Heart failure (HF) is a complex chronic condition characterized by structural and functional impairments. The differentiation of endothelial cells into myofibroblasts (EndoMT) in response to cardiac fibrosis is controversial, and the relative contribution of endothelial plasticity remains to be explored. Single-cell RNA sequencing was used to identify endothelial cells undergoing fibrotic differentiation within 2 weeks of transverse aortic constriction (TAC). This subset of endothelial cells transiently expressed fibrotic genes but had low expression of alpha-smooth muscle actin, indicating a non-canonical EndoMT, which we named a transient fibrotic-like phenotype (EndoFP). The role of EndoFP in pathological cardiac remodeling may be correlated with increased levels of osteopontin. Cardiomyocytes and fibroblasts co-cultured with EndoFP exhibited heightened pro-hypertrophic and pro-fibrotic effects. Mechanistically, we found that the upregulated expression of insulin-like growth factor-binding protein 5 may be a key mediator of EndoFP-induced cardiac dysfunction. Furthermore, our findings suggested that Rab5a is a novel regulatory gene involved in the EndoFP process. Our study suggests that the specific endothelial subset identified in TAC-induced pressure overload plays a critical role in the cellular interactions that lead to cardiac fibrosis and hypertrophy. Additionally, our findings provide insight into the mechanisms underlying EndoFP, making it a potential therapeutic target for early heart failure.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Cardiopatías / Insuficiencia Cardíaca / Cardiomiopatías Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Cardiopatías / Insuficiencia Cardíaca / Cardiomiopatías Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Año: 2024 Tipo del documento: Article