Your browser doesn't support javascript.
loading
Temperature-Controllable Liquid Crystalline Medium for Stereochemical Elucidation of Organic Compounds via Residual Chemical Shift Anisotropies.
Yu, Gangjin; Chen, Yihao; Peng, Yun; Wang, Guan; Zhu, Mingjun; Zhao, Xiaoling; Yang, Minghui; Zhang, Xu; Liu, Maili; He, Lichun.
  • Yu G; State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei 430071, China.
  • Chen Y; State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei 430071, China.
  • Peng Y; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Wang G; State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei 430071, China.
  • Zhu M; State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei 430071, China.
  • Zhao X; State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei 430071, China.
  • Yang M; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Zhang X; Department of Reproductive Medicine General Hospital of Central Theater Command of the People's Liberation Army, Wuhan, Hubei 430061, China.
  • Liu M; State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei 430071, China.
  • He L; University of Chinese Academy of Sciences, Beijing 100049, China.
Anal Chem ; 2024 Feb 09.
Article en En | MEDLINE | ID: mdl-38335322
ABSTRACT
The configuration elucidation of organic molecules continues to pose significant challenges in studies involving stereochemistry. Nuclear magnetic resonance (NMR) techniques are powerful for obtaining such structural information. Anisotropic NMR techniques, such as measurement of residual dipolar couplings (RDCs) and residual chemical shift anisotropies (RCSAs), complementing isotropic NMR parameters, provide relative configuration information. RCSAs provide valuable structural information, especially for nonprotonated carbons, yet have been severely underutilized due to the lack of an easily operational alignment medium capable of rapid transition from anisotropic to isotropic environments, especially in aqueous conditions. In this study, an oligopeptide-based alignment media (FK)4 is presented for RCSA measurements. Temperature variation manipulates the assembly of (FK)4, yielding tunable anisotropic and isotropic phases without the requirement of any special devices or time-consuming correction procedures during data analysis. Decent observed ΔΔRCSA values from sp3 carbons benefit the utilization of RCSA measurements in the structural elucidation of organic molecules highly composed with sp3 carbons. Moreover, the (FK)4 alignment medium is applicable for both RDC and RCSA measurements in one sample, further advancing the configuration analysis of molecules of interest.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article