Your browser doesn't support javascript.
loading
Discovery of an antitumor compound from xenorhabdus stockiae HN_xs01.
Huang, Xiyin; Tang, Qiong; Liu, Siqin; Li, Chen; Li, Yaoguang; Sun, Yunjun; Ding, Xuezhi; Xia, Liqiu; Hu, Shengbiao.
  • Huang X; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No.36 Lushan Street, Changsha, 410081, China.
  • Tang Q; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No.36 Lushan Street, Changsha, 410081, China.
  • Liu S; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No.36 Lushan Street, Changsha, 410081, China.
  • Li C; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No.36 Lushan Street, Changsha, 410081, China.
  • Li Y; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No.36 Lushan Street, Changsha, 410081, China.
  • Sun Y; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No.36 Lushan Street, Changsha, 410081, China.
  • Ding X; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No.36 Lushan Street, Changsha, 410081, China.
  • Xia L; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No.36 Lushan Street, Changsha, 410081, China.
  • Hu S; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No.36 Lushan Street, Changsha, 410081, China. shengbiaohu@hunnu.edu.cn.
World J Microbiol Biotechnol ; 40(3): 101, 2024 Feb 17.
Article en En | MEDLINE | ID: mdl-38366186
ABSTRACT
Xenorhabdus, known for its symbiotic relationship with Entomopathogenic nematodes (EPNs), belongs to the Enterobacteriaceae family. This dual-host symbiotic nematode exhibits pathogenic traits, rendering it a promising biocontrol agent against insects. Our prior investigations revealed that Xenorhabdus stockiae HN_xs01, isolated in our laboratory, demonstrates exceptional potential in halting bacterial growth and displaying anti-tumor activity. Subsequently, we separated and purified the supernatant of the HN_xs01 strain and obtained a new compound with significant inhibitory activity on tumor cells, which we named XNAE. Through LC-MS analysis, the mass-to-nucleus ratio of XNAE was determined to be 254.24. Our findings indicated that XNAE exerts a time- and dose-dependent inhibition on B16 and HeLa cells. After 24 h, its IC50 for B16 and HeLa cells was 30.178 µg/mL and 33.015 µg/mL, respectively. Electron microscopy revealed conspicuous damage to subcellular structures, notably mitochondria and the cytoskeleton, resulting in a notable reduction in cell numbers among treated tumor cells. Interestingly, while XNAE exerted a more pronounced inhibitory effect on B16 cells compared to HeLa cells, it showed no discernible impact on HUVEC cells. Treatment of B16 cells with XNAE induced early apoptosis and led to cell cycle arrest in the G2 phase, as evidenced by flow cytometry analysis. The impressive capability of X. stockiae HN_xs01 in synthesizing bioactive secondary metabolites promises to significantly expand the reservoir of natural products. Further exploration to identify the bioactivity of these compounds holds the potential to shed light on their roles in bacteria-host interaction. Overall, these outcomes underscore the promising potential of XNAE as a bioactive compound for tumor treatment.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Xenorhabdus / Nematodos Límite: Animals / Humans Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Xenorhabdus / Nematodos Límite: Animals / Humans Idioma: En Año: 2024 Tipo del documento: Article