Your browser doesn't support javascript.
loading
Single-molecular diffusivity and long jumps of large organic molecules: CoPc on Ag(100).
Sabik, Agata; Ellis, John; Hedgeland, Holly; Ward, David J; Jardine, Andrew P; Allison, William; Antczak, Grazyna; Tamtögl, Anton.
  • Sabik A; Institute of Experimental Physics, University of Wroclaw, Wroclaw, Poland.
  • Ellis J; Department of Semiconductor Materials Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland.
  • Hedgeland H; Cavendish Laboratory, Cambridge, United Kingdom.
  • Ward DJ; Cavendish Laboratory, Cambridge, United Kingdom.
  • Jardine AP; Cavendish Laboratory, Cambridge, United Kingdom.
  • Allison W; Cavendish Laboratory, Cambridge, United Kingdom.
  • Antczak G; Cavendish Laboratory, Cambridge, United Kingdom.
  • Tamtögl A; Institute of Experimental Physics, University of Wroclaw, Wroclaw, Poland.
Front Chem ; 12: 1355350, 2024.
Article en En | MEDLINE | ID: mdl-38380395
ABSTRACT
Energy dissipation and the transfer rate of adsorbed molecules do not only determine the rates of chemical reactions but are also a key factor that often dictates the growth of organic thin films. Here, we present a study of the surface dynamical motion of cobalt phthalocyanine (CoPc) on Ag(100) in reciprocal space based on the helium spin-echo technique in comparison with previous scanning tunnelling microscopy studies. It is found that the activation energy for lateral diffusion changes from 150 meV at 45-50 K to ≈100 meV at 250-350 K, and that the process goes from exclusively single jumps at low temperatures to predominantly long jumps at high temperatures. We thus illustrate that while the general diffusion mechanism remains similar, upon comparing the diffusion process over widely divergent time scales, indeed different jump distributions and a decrease of the effective diffusion barrier are found. Hence a precise molecular-level understanding of dynamical processes and thin film formation requires following the dynamics over the entire temperature scale relevant to the process. Furthermore, we determine the diffusion coefficient and the atomic-scale friction of CoPc and establish that the molecular motion on Ag(100) corresponds to a low friction scenario as a consequence of the additional molecular degrees of freedom.
Palabras clave