Your browser doesn't support javascript.
loading
Förster Resonance Energy Transfer: Stimulus-Responsive Purely Organic Room Temperature Phosphorescence through Dynamic B-N bond.
Tu, Liangjing; Chen, Yi; Song, Xiaojuan; Jiang, Wanqing; Xie, Yujun; Li, Zhen.
  • Tu L; Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China.
  • Chen Y; Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China.
  • Song X; Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China.
  • Jiang W; Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, Fujian, 350207, China.
  • Xie Y; Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China.
  • Li Z; Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China.
Angew Chem Int Ed Engl ; 63(20): e202402865, 2024 May 13.
Article en En | MEDLINE | ID: mdl-38415964
ABSTRACT
Recently, stimulus-responsive organic materials with room-temperature phosphorescence (RTP) properties have attracted significant attention owing to their potential applications in chemical sensing, anticounterfeiting, and displays. However, molecular design currently lacks systematicity and effectiveness. Herein, we report a capture-release strategy for the construction of reversible RTP via B/N Lewis pairs. Specifically, the RTP of the Lewis acid of 7-bromo-5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene (BrBA) can be deactivated through capturing by the Lewis base, N,N-diphenyl-4-(pyridin-4-yl)aniline (TPAPy), and reactivated by dissociation of B-N bonds to release BrBA. Reversible RTP is attributed to the exceptional self-assembly capability of BrBA, whereas the tunable RTP colors are derived from distinct Förster resonance energy transfer (FRET) processes. The potential applications of RTP materials in information storage and anti-counterfeiting were also experimentally validated. The capture-release approach proposed in this study offers an effective strategy for designing stimulus-responsive materials.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article