Your browser doesn't support javascript.
loading
Telo boxes within the AGAMOUS second intron recruit histone 3 lysine 27 methylation to increase petal number in rose (Rosa chinensis) in response to low temperatures.
Lu, Jun; Wang, Weinan; Fan, Chunguo; Sun, Jingjing; Yuan, Guozhen; Guo, Yuhan; Yu, Xinyu; Chang, Yufei; Liu, Jinyi; Wang, Changquan.
  • Lu J; Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
  • Wang W; Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
  • Fan C; Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
  • Sun J; Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
  • Yuan G; Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
  • Guo Y; Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
  • Yu X; Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
  • Chang Y; Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
  • Liu J; Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
  • Wang C; Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
Plant J ; 118(5): 1486-1499, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38457289
ABSTRACT
The petals of rose (Rosa sp.) flowers determine the ornamental and industrial worth of this species. The number of petals in roses was previously shown to be subject to fluctuations in ambient temperature. However, the mechanisms by which rose detects and responds to temperature changes are not entirely understood. In this study, we identified short interstitial telomere motifs (telo boxes) in the second intron of AGAMOUS (RcAG) from China rose (Rosa chinensis) that play an essential role in precise temperature perception. The second intron of RcAG harbors two telo boxes that recruit telomere repeat binding factors (RcTRBs), which interact with CURLY LEAF (RcCLF) to compose a repressor complex. We show that this complex suppresses RcAG expression when plants are subjected to low temperatures via depositing H3K27me3 marks (trimethylation of lysine 27 on histone H3) over the RcAG gene body. This regulatory mechanism explains the low-temperature-dependent decrease in RcAG transcript levels, leading to the production of more petals under these conditions. Our results underscore an interesting intron-mediated regulatory mechanism governing RcAG expression, enabling rose plants to perceive temperature cues and establish petal numbers.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Proteínas de Plantas / Histonas / Intrones / Rosa / Flores Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Proteínas de Plantas / Histonas / Intrones / Rosa / Flores Idioma: En Año: 2024 Tipo del documento: Article