Your browser doesn't support javascript.
loading
Continuous evaluation of denoising strategies in resting-state fMRI connectivity using fMRIPrep and Nilearn.
Wang, Hao-Ting; Meisler, Steven L; Sharmarke, Hanad; Clarke, Natasha; Gensollen, Nicolas; Markiewicz, Christopher J; Paugam, François; Thirion, Bertrand; Bellec, Pierre.
  • Wang HT; Centre de recherche de l'institut Universitaire de gériatrie de Montréal (CRIUGM), Montréal, Québec, Canada.
  • Meisler SL; Program in Speech and Hearing Bioscience and Technology, Harvard University, Massachusetts, United States of America.
  • Sharmarke H; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Massachusetts, United States of America.
  • Clarke N; Centre de recherche de l'institut Universitaire de gériatrie de Montréal (CRIUGM), Montréal, Québec, Canada.
  • Gensollen N; Centre de recherche de l'institut Universitaire de gériatrie de Montréal (CRIUGM), Montréal, Québec, Canada.
  • Markiewicz CJ; Inria, CEA, Université Paris-Saclay, Paris, France.
  • Paugam F; Department of Psychology, Stanford University, Stanford, United States of America.
  • Thirion B; Centre de recherche de l'institut Universitaire de gériatrie de Montréal (CRIUGM), Montréal, Québec, Canada.
  • Bellec P; Computer Science and Operations Research Department, Université de Montréal, Montréal, Québec, Canada.
PLoS Comput Biol ; 20(3): e1011942, 2024 Mar.
Article en En | MEDLINE | ID: mdl-38498530
ABSTRACT
Reducing contributions from non-neuronal sources is a crucial step in functional magnetic resonance imaging (fMRI) connectivity analyses. Many viable strategies for denoising fMRI are used in the literature, and practitioners rely on denoising benchmarks for guidance in the selection of an appropriate choice for their study. However, fMRI denoising software is an ever-evolving field, and the benchmarks can quickly become obsolete as the techniques or implementations change. In this work, we present a denoising benchmark featuring a range of denoising strategies, datasets and evaluation metrics for connectivity analyses, based on the popular fMRIprep software. The benchmark prototypes an implementation of a reproducible framework, where the provided Jupyter Book enables readers to reproduce or modify the figures on the Neurolibre reproducible preprint server (https//neurolibre.org/). We demonstrate how such a reproducible benchmark can be used for continuous evaluation of research software, by comparing two versions of the fMRIprep. Most of the benchmark results were consistent with prior literature. Scrubbing, a technique which excludes time points with excessive motion, combined with global signal regression, is generally effective at noise removal. Scrubbing was generally effective, but is incompatible with statistical analyses requiring the continuous sampling of brain signal, for which a simpler strategy, using motion parameters, average activity in select brain compartments, and global signal regression, is preferred. Importantly, we found that certain denoising strategies behave inconsistently across datasets and/or versions of fMRIPrep, or had a different behavior than in previously published benchmarks. This work will hopefully provide useful guidelines for the fMRIprep users community, and highlight the importance of continuous evaluation of research methods.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Imagen por Resonancia Magnética Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Imagen por Resonancia Magnética Idioma: En Año: 2024 Tipo del documento: Article