Your browser doesn't support javascript.
loading
A deep learning method to identify and localize large-vessel occlusions from cerebral digital subtraction angiography.
Warman, Roshan; Warman, Pranav I; Warman, Anmol; Bueso, Tulio; Ota, Riichi; Windisch, Thomas; Neves, Gabriel.
  • Warman R; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
  • Warman PI; Duke University School of Medicine, Durham, North Carolina, USA.
  • Warman A; Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
  • Bueso T; Department of Neurology, Texas Tech University Medical Sciences Center, Lubbock, Texas, USA.
  • Ota R; Department of Neurology, Texas Tech University Medical Sciences Center, Lubbock, Texas, USA.
  • Windisch T; Department of Neurology, Texas Tech University Medical Sciences Center, Lubbock, Texas, USA.
  • Neves G; Covenant Health, Lubbock, Texas, USA.
J Neuroimaging ; 34(3): 366-375, 2024.
Article en En | MEDLINE | ID: mdl-38506407
ABSTRACT
BACKGROUND AND

PURPOSE:

An essential step during endovascular thrombectomy is identifying the occluded arterial vessel on a cerebral digital subtraction angiogram (DSA). We developed an algorithm that can detect and localize the position of occlusions in cerebral DSA.

METHODS:

We retrospectively collected cerebral DSAs from a single institution between 2018 and 2020 from 188 patients, 86 of whom suffered occlusions of the M1 and proximal M2 segments. We trained an ensemble of deep-learning models on fewer than 60 large-vessel occlusion (LVO)-positive patients. We evaluated the model on an independent test set and evaluated the truth of its predicted localizations using Intersection over Union and expert review.

RESULTS:

On an independent test set of 166 cerebral DSA frames with an LVO prevalence of 0.19, the model achieved a specificity of 0.95 (95% confidence interval [CI] 0.90, 0.99), a precision of 0.7450 (95% CI 0.64, 0.88), and a sensitivity of 0.76 (95% CI 0.66, 0.91). The model correctly localized the LVO in at least one frame in 13 of the 14 LVO-positive patients in the test set. The model achieved a precision of 0.67 (95% CI 0.52, 0.79), recall of 0.69 (95% CI 0.46, 0.81), and a mean average precision of 0.75 (95% CI 0.56, 0.91).

CONCLUSION:

This work demonstrates that a deep learning strategy using a limited dataset can generate effective representations used to identify LVOs. Generating an expanded and more complete dataset of LVOs with obstructed LVOs is likely the best way to improve the model's ability to localize LVOs.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Angiografía Cerebral / Angiografía de Substracción Digital / Aprendizaje Profundo Límite: Aged / Female / Humans / Male / Middle aged Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Angiografía Cerebral / Angiografía de Substracción Digital / Aprendizaje Profundo Límite: Aged / Female / Humans / Male / Middle aged Idioma: En Año: 2024 Tipo del documento: Article