Your browser doesn't support javascript.
loading
Educational simulator for mastoidectomy considering mechanical properties using 3D printing and its usability evaluation.
Ock, Junhyeok; Choi, Yeonjoo; Lee, Dong-Gyu; Chung, Jong Woo; Kim, Namkug.
  • Ock J; Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil Songpa-Gu, Seoul, 05505, South Korea.
  • Choi Y; Department of Otorhinolaryngology-Head & Neck Surgery, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil Songpa-Gu, Seoul, 05505, South Korea.
  • Lee DG; Department of Otorhinolaryngology-Head & Neck Surgery, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil Songpa-Gu, Seoul, 05505, South Korea.
  • Chung JW; Department of Otorhinolaryngology-Head & Neck Surgery, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil Songpa-Gu, Seoul, 05505, South Korea. gfinder.jw@gmail.com.
  • Kim N; Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil Songpa-Gu, Seoul, 05505, South Korea. namkugkim@gmail.com.
Sci Rep ; 14(1): 7661, 2024 04 01.
Article en En | MEDLINE | ID: mdl-38561420
ABSTRACT
Complex temporal bone anatomy complicates operations; thus, surgeons must engage in practice to mitigate risks, improving patient safety and outcomes. However, existing training methods often involve prohibitive costs and ethical problems. Therefore, we developed an educational mastoidectomy simulator, considering mechanical properties using 3D printing. The mastoidectomy simulator was modeled on computed tomography images of a patient undergoing a mastoidectomy. Infill was modeled for each anatomical part to provide a realistic drilling sensation. Bone and other anatomies appear in assorted colors to enhance the simulator's educational utility. The mechanical properties of the simulator were evaluated by measuring the screw insertion torque for infill specimens and cadaveric temporal bones and investigating its usability with a five-point Likert-scale questionnaire completed by five otolaryngologists. The maximum insertion torque values of the sigmoid sinus, tegmen, and semicircular canal were 1.08 ± 0.62, 0.44 ± 0.42, and 1.54 ± 0.43 N mm, displaying similar-strength infill specimens of 40%, 30%, and 50%. Otolaryngologists evaluated the quality and usability at 4.25 ± 0.81 and 4.53 ± 0.62. The mastoidectomy simulator could provide realistic bone drilling feedback for educational mastoidectomy training while reinforcing skills and comprehension of anatomical structures.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Entrenamiento Simulado / Mastoidectomía Límite: Humans Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Entrenamiento Simulado / Mastoidectomía Límite: Humans Idioma: En Año: 2024 Tipo del documento: Article