Your browser doesn't support javascript.
loading
Structural stability of invasion graphs for Lotka-Volterra systems.
Almaraz, Pablo; Kalita, Piotr; Langa, José A; Soler-Toscano, Fernando.
  • Almaraz P; Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Campus Reina Mercedes, 41012, Sevilla, Spain.
  • Kalita P; Grupo de Oceanografía de Ecosistemas, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Campus Universitario de Puerto Real, Puerto Real, 11519, Spain.
  • Langa JA; Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Campus Reina Mercedes, 41012, Sevilla, Spain. piotr.kalita@ii.uj.edu.pl.
  • Soler-Toscano F; Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Lojasiewicza 6, 30-348, Kraków, Poland. piotr.kalita@ii.uj.edu.pl.
J Math Biol ; 88(6): 64, 2024 Apr 17.
Article en En | MEDLINE | ID: mdl-38630280
ABSTRACT
In this paper, we study in detail the structure of the global attractor for the Lotka-Volterra system with a Volterra-Lyapunov stable structural matrix. We consider the invasion graph as recently introduced in Hofbauer and Schreiber (J Math Biol 8554, 2022) and prove that its edges represent all the heteroclinic connections between the equilibria of the system. We also study the stability of this structure with respect to the perturbation of the problem parameters. This allows us to introduce a definition of structural stability in ecology in coherence with the classical mathematical concept where there exists a detailed geometrical structure, robust under perturbation, that governs the transient and asymptotic dynamics.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Ecología Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Ecología Idioma: En Año: 2024 Tipo del documento: Article