Your browser doesn't support javascript.
loading
The M3 Muscarinic Acetylcholine Receptor Can Signal through Multiple G Protein Families.
Smith, Jeffrey S; Hilibrand, Ari S; Skiba, Meredith A; Dates, Andrew N; Calvillo-Miranda, Victor G; Kruse, Andrew C.
  • Smith JS; Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts (J.S.S., A.S.H., M.A.S., A.N.D., V.G.C.-M., A.C.K.) and Brigham and Women's Hospital, Boston, Massachusetts (J.S.S.).
  • Hilibrand AS; Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts (J.S.S., A.S.H., M.A.S., A.N.D., V.G.C.-M., A.C.K.) and Brigham and Women's Hospital, Boston, Massachusetts (J.S.S.).
  • Skiba MA; Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts (J.S.S., A.S.H., M.A.S., A.N.D., V.G.C.-M., A.C.K.) and Brigham and Women's Hospital, Boston, Massachusetts (J.S.S.).
  • Dates AN; Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts (J.S.S., A.S.H., M.A.S., A.N.D., V.G.C.-M., A.C.K.) and Brigham and Women's Hospital, Boston, Massachusetts (J.S.S.).
  • Calvillo-Miranda VG; Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts (J.S.S., A.S.H., M.A.S., A.N.D., V.G.C.-M., A.C.K.) and Brigham and Women's Hospital, Boston, Massachusetts (J.S.S.).
  • Kruse AC; Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts (J.S.S., A.S.H., M.A.S., A.N.D., V.G.C.-M., A.C.K.) and Brigham and Women's Hospital, Boston, Massachusetts (J.S.S.) andrew_kruse@hms.harvard.edu.
Mol Pharmacol ; 105(6): 386-394, 2024 May 17.
Article en En | MEDLINE | ID: mdl-38641412
ABSTRACT
The M3 muscarinic acetylcholine receptor (M3R) is a G protein-coupled receptor (GPCR) that regulates important physiologic processes, including vascular tone, bronchoconstriction, and insulin secretion. It is expressed on a wide variety of cell types, including pancreatic beta, smooth muscle, neuronal, and immune cells. Agonist binding to the M3R is thought to initiate intracellular signaling events primarily through the heterotrimeric G protein Gq. However, reports differ on the ability of M3R to couple to other G proteins beyond Gq. Using members from the four primary G protein families (Gq, Gi, Gs, and G13) in radioligand binding, GTP turnover experiments, and cellular signaling assays, including live cell G protein dissociation and second messenger assessment of cAMP and inositol trisphosphate, we show that other G protein families, particularly Gi and Gs, can also interact with the human M3R. We further show that these interactions are productive as assessed by amplification of classic second messenger signaling events. Our findings demonstrate that the M3R is more promiscuous with respect to G protein interactions than previously appreciated. SIGNIFICANCE STATEMENT The study reveals that the human M3 muscarinic acetylcholine receptor (M3R), known for its pivotal roles in diverse physiological processes, not only activates intracellular signaling via Gq as previously known but also functionally interacts with other G protein families such as Gi and Gs, expanding our understanding of its versatility in mediating cellular responses. These findings signify a broader and more complex regulatory network governed by M3R and have implications for therapeutic targeting.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Transducción de Señal / Proteínas de Unión al GTP / Receptor Muscarínico M3 Límite: Animals / Humans Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Transducción de Señal / Proteínas de Unión al GTP / Receptor Muscarínico M3 Límite: Animals / Humans Idioma: En Año: 2024 Tipo del documento: Article