Genomic profile of eGFP-tagged senecavirus A subjected to serial plaque-to-plaque transfers.
Microb Pathog
; 191: 106661, 2024 Jun.
Article
en En
| MEDLINE
| ID: mdl-38657711
ABSTRACT
Senecavirus A (SVA) belongs to the genus Senecavirus in the family Picornaviridae. This virus possesses a positive-sense, single-stranded RNA genome, approximately 7200 nt in length, composed of a single 5' untranslated region, encoding region and 3' untranslated region. In this study, a recombinant SVA tagged with enhanced green ï¬uorescent protein (eGFP) sequence, rSVA-eGFP, was rescued from its cDNA clone using reverse genetics. The passage-5 (P5) rSVA-eGFP was totally subjected to 55 rounds of consecutive fluorescent plaque-to-fluorescent plaque (FP-FP) transfers, and one extra common passaging in vitro. The P61 viral stock was analyzed by next-generation sequencing. The result showed ten single-nucleotide mutations (SNMs) in the rSVA-eGFP genome, including nine transitions and only one transversion. The P61 progeny still showed a complete eGFP sequence, indicating no occurrence of copy-choice recombination within the eGFP region during serial FP-FP transfers. In other words, this progeny was genetically deficient in the recombination of eGFP sequence (RES), namely, an RES-deficient strain. Out of ten SNMs, three were missense mutations, leading to single-amino acid mutations (SAAMs) F15V in L protein, A74T in VP2, and E53R in 3D protein. The E53R was predicted to be spatially adjacent to the RNA channel of 3D protein, perhaps involved in the emergence of RES-deficient strain. In conclusion, this study uncovered a global landscape of rSVA-eGFP genome after serial FP-FP transfers, and moreover shed light on a putative SAAM possibly related to the RES-deficient mechanism.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Picornaviridae
/
Genoma Viral
/
Proteínas Fluorescentes Verdes
Idioma:
En
Año:
2024
Tipo del documento:
Article