Your browser doesn't support javascript.
loading
The Effect of Recruitment Maneuver on Static Lung Compliance in Patients Undergoing General Anesthesia for Laparoscopic Cholecystectomy: A Single-Centre Prospective Clinical Intervention Study.
Andelic, Nada; Uvelin, Arsen; Stokic, Edita; Popovic, Radmila; Zdravkovic, Ranko; Preveden, Andrej; Zornic, Nenad.
  • Andelic N; Clinic for Anesthesia, Intensive Care and Pain Medicine, Clinical Centre of Vojvodina, 21000 Novi Sad, Serbia.
  • Uvelin A; Faculty of Medical Sciences, Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia.
  • Stokic E; Clinic for Anesthesia, Intensive Care and Pain Medicine, Clinical Centre of Vojvodina, 21000 Novi Sad, Serbia.
  • Popovic R; Faculty of Medicine, Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia.
  • Zdravkovic R; Faculty of Medicine, Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia.
  • Preveden A; Clinic for Endocrinology, Diabetes and Metabolism, Clinical Centre of Vojvodina, 21000 Novi Sad, Serbia.
  • Zornic N; Clinic for Anesthesia, Intensive Care and Pain Medicine, Clinical Centre of Vojvodina, 21000 Novi Sad, Serbia.
Medicina (Kaunas) ; 60(4)2024 Apr 19.
Article en En | MEDLINE | ID: mdl-38674312
ABSTRACT
Background and

Objectives:

The aim of this study was to examine whether the use of an alveolar recruitment maneuver (RM) leads to a significant increase in static lung compliance (Cstat) and an improvement in gas exchange in patients undergoing laparoscopic cholecystectomy. Material and

Methods:

A clinical prospective intervention study was conducted. Patients were divided into two groups according to their body mass index (BMI) normal-weight (group I) and pre-obese and obese grade I (group II). Lung mechanics were monitored (Cstat, dynamic compliance-Cdin, peak pressure-Ppeak, plateau pressure-Pplat, driving pressure-DP) alongside gas exchange, and hemodynamic changes (heart rate-HR, mean arterial pressure-MAP) at six time points T1 (induction of anesthesia), T2 (formation of pneumoperitoneum), T3 (RM with a PEEP of 5 cm H2O), T4 (RM with a PEEP of 7 cm H2O), T5 (desufflation), and T6 (RM at the end). The RM was performed by increasing the peak pressure by +5 cm of H2O at an equal inspiration-to-expiration ratio (I/E = 11) and applying a PEEP of 5 and 7 cm of H2O.

Results:

Out of 96 patients, 33 belonged to group I and 63 to group II. An increase in Cstat values occurred after all three RMs. At each time point, the Cstat value was measured higher in group I than in group II. A higher increase in Cstat was observed in group II after the second and third RM. Cstat values were higher at the end of the surgical procedure compared to values after the induction of anesthesia. The RM led to a significant increase in PaO2 in both groups without changes in HR or MAP.

Conclusions:

During laparoscopic cholecystectomy, the application of RM leads to a significant increase in Cstat and an improvement in gas exchange. The prevention of atelectasis during anesthesia should be initiated immediately after the induction of anesthesia, using protective mechanical ventilation and RM.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Colecistectomía Laparoscópica / Anestesia General Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Colecistectomía Laparoscópica / Anestesia General Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Año: 2024 Tipo del documento: Article