Your browser doesn't support javascript.
loading
Iron (II)-based metal-organic framework nanozyme for boosting tumor ferroptosis through inhibiting DNA damage repair and system Xc.
Xue, Panpan; Zhuang, Huilan; Bai, Tingjie; Zeng, Xuemei; Deng, Jinpeng; Shao, Sijie; Yan, Shuangqian.
  • Xue P; The Straits Institute of Flexible Electronics (SIFE, Future Technologies), The Straits Laboratory of Flexible Electronics (SLoFE), Fujian Normal University, Fuzhou, Fujian, 350117, China.
  • Zhuang H; The Straits Institute of Flexible Electronics (SIFE, Future Technologies), The Straits Laboratory of Flexible Electronics (SLoFE), Fujian Normal University, Fuzhou, Fujian, 350117, China.
  • Bai T; The Straits Institute of Flexible Electronics (SIFE, Future Technologies), The Straits Laboratory of Flexible Electronics (SLoFE), Fujian Normal University, Fuzhou, Fujian, 350117, China.
  • Zeng X; Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, 1 Keji Road, Fuzhou, 350117, PR China. xmzeng@fjnu.edu.cn.
  • Deng J; The Straits Institute of Flexible Electronics (SIFE, Future Technologies), The Straits Laboratory of Flexible Electronics (SLoFE), Fujian Normal University, Fuzhou, Fujian, 350117, China.
  • Shao S; The Straits Institute of Flexible Electronics (SIFE, Future Technologies), The Straits Laboratory of Flexible Electronics (SLoFE), Fujian Normal University, Fuzhou, Fujian, 350117, China.
  • Yan S; The Straits Institute of Flexible Electronics (SIFE, Future Technologies), The Straits Laboratory of Flexible Electronics (SLoFE), Fujian Normal University, Fuzhou, Fujian, 350117, China. ifeshqyan@fjnu.edu.cn.
J Nanobiotechnology ; 22(1): 228, 2024 May 08.
Article en En | MEDLINE | ID: mdl-38715049
ABSTRACT
Development of ferroptosis-inducible nanoplatforms with high efficiency and specificity is highly needed and challenging in tumor ferrotherapy. Here, we demonstrate highly effective tumor ferrotherapy using iron (II)-based metal-organic framework (FessMOF) nanoparticles, assembled from disulfide bonds and ferrous ions. The as-prepared FessMOF nanoparticles exhibit peroxidase-like activity and pH/glutathione-dependent degradability, which enables tumor-responsive catalytic therapy and glutathione depletion by the thiol/disulfide exchange to suppress glutathione peroxidase 4, respectively. Upon PEGylation and Actinomycin D (ActD) loading, the resulting FessMOF/ActD-PEG nanoplatform induces marked DNA damage and lipid peroxidation. Concurrently, we found that ActD can inhibit Xc- system and elicit ferritinophagy, which further boosts the ferrotherapeutic efficacy of the FessMOF/ActD-PEG. In vivo experiments demonstrate that our fabricated nanoplatform presents excellent biocompatibility and a high tumor inhibition rate of 91.89%.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Daño del ADN / Estructuras Metalorgánicas / Ferroptosis / Hierro Límite: Animals / Female / Humans Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Daño del ADN / Estructuras Metalorgánicas / Ferroptosis / Hierro Límite: Animals / Female / Humans Idioma: En Año: 2024 Tipo del documento: Article