Your browser doesn't support javascript.
loading
Genome-wide association study and genomic selection of spike-related traits in bread wheat.
Xu, Huiyuan; Wang, Zixu; Wang, Faxiang; Hu, Xinrong; Ma, Chengxue; Jiang, Huijiao; Xie, Chang; Gao, Yuhang; Ding, Guangshuo; Zhao, Chunhua; Qin, Ran; Cui, Dezhou; Sun, Han; Cui, Fa; Wu, Yongzhen.
  • Xu H; College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China.
  • Wang Z; College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China.
  • Wang F; College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China.
  • Hu X; College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China.
  • Ma C; College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China.
  • Jiang H; College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China.
  • Xie C; College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China.
  • Gao Y; College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China.
  • Ding G; College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China.
  • Zhao C; College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China.
  • Qin R; College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China.
  • Cui D; Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/Key Laboratory of Wheat Biology and Genetics and Breeding in Northern Huang-Huai River Plain, Ministry of Agriculture and Rural Affairs/Shandong Technology Innovation Center of
  • Sun H; College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China. sunhan@ldu.edu.cn.
  • Cui F; College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China. sdaucf@126.com.
  • Wu Y; College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China. yongzhenwu1204@163.com.
Theor Appl Genet ; 137(6): 131, 2024 May 15.
Article en En | MEDLINE | ID: mdl-38748046
ABSTRACT
KEY MESSAGE Identification of 337 stable MTAs for wheat spike-related traits improved model accuracy, and favorable alleles of MTA259 and MTA64 increased grain weight and yield per plant. Wheat (Triticum aestivum L.) is one of the three primary global, staple crops. Improving spike-related traits in wheat is crucial for optimizing spike and plant morphology, ultimately leading to increased grain yield. Here, we performed a genome-wide association study using a dataset of 24,889 high-quality unique single-nucleotide polymorphisms (SNPs) and phenotypic data from 314 wheat accessions across eight diverse environments. In total, 337 stable and significant marker-trait associations (MTAs) related to spike-related traits were identified. MTA259 and MTA64 were consistently detected in seven and six environments, respectively. The presence of favorable alleles associated with MTA259 and MTA64 significantly reduced wheat spike exsertion length and spike length, while enhancing thousand kernel weight and yield per plant. Combined gene expression and network analyses identified TraesCS6D03G0692300 and TraesCS6D03G0692700 as candidate genes for MTA259 and TraesCS2D03G0111700 and TraesCS2D03G0112500 for MTA64. The identified MTAs significantly improved the prediction accuracy of each model compared with using all the SNPs, and the random forest model was optimal for genome selection. Additionally, the eight stable and major MTAs, including MTA259, MTA64, MTA66, MTA94, MTA110, MTA165, MTA180, and MTA164, were converted into cost-effective and efficient detection markers. This study provided valuable genetic resources and reliable molecular markers for wheat breeding programs.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Fenotipo / Triticum / Polimorfismo de Nucleótido Simple Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Fenotipo / Triticum / Polimorfismo de Nucleótido Simple Idioma: En Año: 2024 Tipo del documento: Article