Your browser doesn't support javascript.
loading
Structure-Based Optimization of Pyrazinamide-Containing Macrocyclic Derivatives as Fms-like Tyrosine Kinase 3 (FLT3) Inhibitors to Overcome Clinical Mutations.
Zheng, Xuan; Chen, Zhiwen; Guo, Ming; Liang, Hong; Song, Xiaojuan; Liu, Yiling; Liao, Zhenling; Zhang, Yan; Guo, Jing; Zhou, Yang; Zhang, Zhi-Min; Tu, Zhengchao; Zhang, Ye; Chen, Yongheng; Zhang, Zhang; Lu, Xiaoyun.
  • Zheng X; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of
  • Chen Z; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of
  • Guo M; Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
  • Liang H; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of
  • Song X; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of
  • Liu Y; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of
  • Liao Z; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of
  • Zhang Y; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of
  • Guo J; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of
  • Zhou Y; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of
  • Zhang ZM; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of
  • Tu Z; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of
  • Zhang Y; Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China.
  • Chen Y; Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
  • Zhang Z; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of
  • Lu X; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of
ACS Pharmacol Transl Sci ; 7(5): 1485-1506, 2024 May 10.
Article en En | MEDLINE | ID: mdl-38751627
ABSTRACT
Secondary mutations in Fms-like tyrosine kinase 3-tyrosine kinase domain (FLT3-TKD) (e.g., D835Y and F691L) have become a major on-target resistance mechanism of FLT3 inhibitors, which present a significant clinical challenge. To date, no effective drugs have been approved to simultaneously overcome clinical resistance caused by these two mutants. Thus, a series of pyrazinamide macrocyclic compounds were first designed and evaluated to overcome the secondary mutations of FLT3. The representative 8v exhibited potent inhibitory activities against FLT3D835Y and FLT3D835Y/F691L with IC50 values of 1.5 and 9.7 nM, respectively. 8v also strongly suppressed the proliferation against Ba/F3 cells transfected with FLT3-ITD, FLT3-ITD-D835Y, FLT3-ITD-F691L, FLT3-ITD-D835Y-F691L, and MV4-11 acute myeloid leukemia (AML) cell lines with IC50 values of 12.2, 10.5, 24.6, 16.9, and 6.8 nM, respectively. Furthermore, 8v demonstrated ideal anticancer efficacy in a Ba/F3-FLT3-ITD-D835Y xenograft model. The results suggested that 8v can serve as a promising macrocycle-based FLT3 inhibitor for the treatment of AML.