Your browser doesn't support javascript.
loading
Supported Biomembrane Systems Incorporating Multiarm Polymers and Bioorthogonal Tethering.
Martin, Jesse A; Li, Yue-Ming; Gilchrist, M Lane.
  • Li YM; Chemical Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States.
Langmuir ; 40(22): 11401-11410, 2024 Jun 04.
Article en En | MEDLINE | ID: mdl-38767862
ABSTRACT
To functionalize interfaces with supported biomembranes and membrane proteins, the challenge is to build stabilized and supported systems that mimic the native lipid microenvironment. Our objective is to control substrate-to-biomembrane spacing and the tethering chemistry so proteoliposomes can be fused and conjugated without perturbation of membrane protein function. Furthermore, the substrates need to exhibit low protein and antibody nonspecific binding to use these systems in assays. We have employed protein orthogonal coupling schemes in concert with multiarm poly(ethylene glycol) (PEG) technology to build supported biomembranes on microspheres. The lipid bilayer structures and tailored substrates of the microsphere-supported biomembranes were analyzed via flow cytometry, confocal fluorescence, and super-resolution imaging microscopy, and the lateral fluidity was quantified using fluorescence recovery after photobleaching (FRAP) techniques. Under these conditions, the 4-arm-PEG20,000-NH2 based configuration gave the most desirable tethering system based on lateral diffusivity and coverage.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Polietilenglicoles / Membrana Dobles de Lípidos Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Polietilenglicoles / Membrana Dobles de Lípidos Idioma: En Año: 2024 Tipo del documento: Article