Your browser doesn't support javascript.
loading
Resolving Nonequilibrium Shape Variations among Millions of Gold Nanoparticles.
Shen, Zhou; Xavier, Paul Lourdu; Bean, Richard; Bielecki, Johan; Bergemann, Martin; Daurer, Benedikt J; Ekeberg, Tomas; Estillore, Armando D; Fangohr, Hans; Giewekemeyer, Klaus; Karnevskiy, Mikhail; Kirian, Richard A; Kirkwood, Henry; Kim, Yoonhee; Koliyadu, Jayanath C P; Lange, Holger; Letrun, Romain; Lübke, Jannik; Mall, Abhishek; Michelat, Thomas; Morgan, Andrew J; Roth, Nils; Samanta, Amit K; Sato, Tokushi; Sikorski, Marcin; Schulz, Florian; Vagovic, Patrik; Wollweber, Tamme; Worbs, Lena; Maia, Filipe; Horke, Daniel Alfred; Küpper, Jochen; Mancuso, Adrian P; Chapman, Henry N; Ayyer, Kartik; Loh, N Duane.
  • Shen Z; Department of Physics, National University of Singapore, 117551 Singapore.
  • Xavier PL; Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany.
  • Bean R; Center for Free-Electron Laser Science, 22761, Hamburg, Germany.
  • Bielecki J; Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany.
  • Bergemann M; The Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany.
  • Daurer BJ; Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany.
  • Ekeberg T; European XFEL, 22869 Schenefeld, Germany.
  • Estillore AD; European XFEL, 22869 Schenefeld, Germany.
  • Fangohr H; European XFEL, 22869 Schenefeld, Germany.
  • Giewekemeyer K; European XFEL, 22869 Schenefeld, Germany.
  • Karnevskiy M; Center for BioImaging Sciences, National University of Singapore, 117557 Singapore.
  • Kirian RA; Diamond Light Source, Harwell Campus, Didcot OX11 0DE, U.K.
  • Kirkwood H; Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden.
  • Kim Y; Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany.
  • Koliyadu JCP; European XFEL, 22869 Schenefeld, Germany.
  • Lange H; European XFEL, 22869 Schenefeld, Germany.
  • Letrun R; European XFEL, 22869 Schenefeld, Germany.
  • Lübke J; Department of Physics, Arizona State University, Tempe, Arizona 85287, United States.
  • Mall A; European XFEL, 22869 Schenefeld, Germany.
  • Michelat T; European XFEL, 22869 Schenefeld, Germany.
  • Morgan AJ; European XFEL, 22869 Schenefeld, Germany.
  • Roth N; The Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany.
  • Samanta AK; Institute of Physics and Astronomy, Universität Potsdam, Karl-Liebknecht-Str. 24, 14476 Potsdam, Germany.
  • Sato T; European XFEL, 22869 Schenefeld, Germany.
  • Sikorski M; The Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany.
  • Schulz F; Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany.
  • Vagovic P; Department of Physics, Universität Hamburg, 22761 Hamburg, Germany.
  • Wollweber T; Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany.
  • Worbs L; Center for Free-Electron Laser Science, 22761, Hamburg, Germany.
  • Maia F; European XFEL, 22869 Schenefeld, Germany.
  • Horke DA; University of Melbourne, Physics, Melbourne, VIC 3010, Australia.
  • Küpper J; Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany.
  • Mancuso AP; Department of Physics, Universität Hamburg, 22761 Hamburg, Germany.
  • Chapman HN; The Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany.
  • Ayyer K; Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany.
  • Loh ND; European XFEL, 22869 Schenefeld, Germany.
ACS Nano ; 18(24): 15576-15589, 2024 Jun 18.
Article en En | MEDLINE | ID: mdl-38810115
ABSTRACT
Nanoparticles, exhibiting functionally relevant structural heterogeneity, are at the forefront of cutting-edge research. Now, high-throughput single-particle imaging (SPI) with X-ray free-electron lasers (XFELs) creates opportunities for recovering the shape distributions of millions of particles that exhibit functionally relevant structural heterogeneity. To realize this potential, three challenges have to be overcome (1) simultaneous parametrization of structural variability in real and reciprocal spaces; (2) efficiently inferring the latent parameters of each SPI measurement; (3) scaling up comparisons between 105 structural models and 106 XFEL-SPI measurements. Here, we describe how we overcame these three challenges to resolve the nonequilibrium shape distributions within millions of gold nanoparticles imaged at the European XFEL. These shape distributions allowed us to quantify the degree of asymmetry in these particles, discover a relatively stable "shape envelope" among nanoparticles, discern finite-size effects related to shape-controlling surfactants, and extrapolate nanoparticles' shapes to their idealized thermodynamic limit. Ultimately, these demonstrations show that XFEL SPI can help transform nanoparticle shape characterization from anecdotally interesting to statistically meaningful.
Palabras clave