Your browser doesn't support javascript.
loading
Nanocrystal Assemblies: Current Advances and Open Problems.
Bassani, Carlos L; van Anders, Greg; Banin, Uri; Baranov, Dmitry; Chen, Qian; Dijkstra, Marjolein; Dimitriyev, Michael S; Efrati, Efi; Faraudo, Jordi; Gang, Oleg; Gaston, Nicola; Golestanian, Ramin; Guerrero-Garcia, G Ivan; Gruenwald, Michael; Haji-Akbari, Amir; Ibáñez, Maria; Karg, Matthias; Kraus, Tobias; Lee, Byeongdu; Van Lehn, Reid C; Macfarlane, Robert J; Mognetti, Bortolo M; Nikoubashman, Arash; Osat, Saeed; Prezhdo, Oleg V; Rotskoff, Grant M; Saiz, Leonor; Shi, An-Chang; Skrabalak, Sara; Smalyukh, Ivan I; Tagliazucchi, Mario; Talapin, Dmitri V; Tkachenko, Alexei V; Tretiak, Sergei; Vaknin, David; Widmer-Cooper, Asaph; Wong, Gerard C L; Ye, Xingchen; Zhou, Shan; Rabani, Eran; Engel, Michael; Travesset, Alex.
  • Bassani CL; Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany.
  • van Anders G; Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada.
  • Banin U; Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
  • Baranov D; Division of Chemical Physics, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden.
  • Chen Q; University of Illinois, Urbana, Illinois 61801, USA.
  • Dijkstra M; Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands.
  • Dimitriyev MS; Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA.
  • Efrati E; Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA.
  • Faraudo J; Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel.
  • Gang O; James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
  • Gaston N; Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Barcelona, Spain.
  • Golestanian R; Department of Chemical Engineering, Columbia University, New York, New York 10027, USA.
  • Guerrero-Garcia GI; Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA.
  • Gruenwald M; Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA.
  • Haji-Akbari A; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, The University of Auckland, Auckland 1142, New Zealand.
  • Ibáñez M; Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany.
  • Karg M; Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK.
  • Kraus T; Facultad de Ciencias de la Universidad Autónoma de San Luis Potosí, 78295 San Luis Potosí, México.
  • Lee B; Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA.
  • Van Lehn RC; Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, USA.
  • Macfarlane RJ; Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria.
  • Mognetti BM; Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
  • Nikoubashman A; INM - Leibniz-Institute for New Materials, 66123 Saarbrücken, Germany.
  • Osat S; Saarland University, Colloid and Interface Chemistry, 66123 Saarbrücken, Germany.
  • Prezhdo OV; X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
  • Rotskoff GM; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53717, USA.
  • Saiz L; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.
  • Shi AC; Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, 1050 Brussels, Belgium.
  • Skrabalak S; Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany.
  • Smalyukh II; Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany.
  • Tagliazucchi M; Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany.
  • Talapin DV; Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
  • Tkachenko AV; Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA.
  • Tretiak S; Department of Chemistry, Stanford University, Stanford, California 94305, USA.
  • Vaknin D; Department of Biomedical Engineering, University of California, Davis, California 95616, USA.
  • Widmer-Cooper A; Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
  • Wong GCL; Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
  • Ye X; Department of Physics and Chemical Physics Program, University of Colorado, Boulder, Colorado 80309, USA.
  • Zhou S; International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashi-Hiroshima City 739-0046, Japan.
  • Rabani E; Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Buenos Aires 1428 Argentina.
  • Engel M; Department of Chemistry, James Franck Institute and Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA.
  • Travesset A; Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA.
ACS Nano ; 18(23): 14791-14840, 2024 Jun 11.
Article en En | MEDLINE | ID: mdl-38814908
ABSTRACT
We explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states. We also examine dynamic effects and optimization of assembly protocols. Finally, we discuss promising material functions and examples of their realization with nanocrystal assemblies.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article