Your browser doesn't support javascript.
loading
Preclinical Systemic Pharmacokinetics, Dose Proportionality, and Central Nervous System Distribution of the ATM Inhibitor WSD0628, a Novel Radiosensitizer for the Treatment of Brain Tumors.
Rathi, Sneha; Oh, Ju-Hee; Zhang, Wenjuan; Mladek, Ann C; Garcia, Darwin A; Xue, Zhiyi; Burgenske, Danielle M; Zhang, Wenqiu; Le, Jiayan; Zhong, Wei; Sarkaria, Jann N; Elmquist, William F.
  • Rathi S; Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Bi
  • Oh JH; Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Bi
  • Zhang W; Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Bi
  • Mladek AC; Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Bi
  • Garcia DA; Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Bi
  • Xue Z; Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Bi
  • Burgenske DM; Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Bi
  • Zhang W; Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Bi
  • Le J; Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Bi
  • Zhong W; Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Bi
  • Sarkaria JN; Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Bi
  • Elmquist WF; Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., W.Q.Z., J.L., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., D.A.G., Z.X., D.M.B., J.N.S.); and WayShine Bi
J Pharmacol Exp Ther ; 390(2): 260-275, 2024 Jul 18.
Article en En | MEDLINE | ID: mdl-38858089
ABSTRACT
Radiation therapy, a standard treatment option for many cancer patients, induces DNA double-strand breaks (DSBs), leading to cell death. Ataxia telangiectasia mutated (ATM) kinase is a key regulator of DSB repair, and ATM inhibitors are being explored as radiosensitizers for various tumors, including primary and metastatic brain tumors. Efficacy of radiosensitizers for brain tumors may be influenced by a lack of effective drug delivery across the blood-brain barrier. The objective of this study was to evaluate the systemic pharmacokinetics and mechanisms that influence the central nervous system (CNS) distribution of WSD0628, a novel and potent ATM inhibitor, in the mouse. Further, we have used these observations to form the basis of predicting effective exposures for clinical application. We observed a greater than dose proportional increase in exposure, likely due to saturation of clearance processes. Our results show that WSD0628 is orally bioavailable and CNS penetrant, with unbound partitioning in CNS (i.e., unbound tissue partition coefficient) between 0.15 and 0.3. CNS distribution is not limited by the efflux transporters P-glycoprotein and breast cancer resistant protein. WSD0628 is distributed uniformly among different brain regions. Thus, WSD0628 has favorable pharmacokinetic properties and potential for further exploration to determine the pharmacodynamics-pharmacokinetics efficacy relationship in CNS tumors. This approach will provide critical insights for the clinical translation of WSD0628 for the treatment of primary and secondary brain tumors. SIGNIFICANCE STATEMENT This study evaluates the preclinical systemic pharmacokinetics, dose proportionality, and mechanisms influencing CNS distribution of WSD0628, a novel ATM inhibitor for the treatment of brain tumors. Results indicate that WSD0628 is orally bioavailable and CNS penetrant without efflux transporter liability. We also observed a greater than dose proportional increase in exposure in both the plasma and brain. These favorable pharmacokinetic properties indicate WSD0628 has potential for further exploration for use as a radiosensitizer in the treatment of brain tumors.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Fármacos Sensibilizantes a Radiaciones / Neoplasias Encefálicas / Proteínas de la Ataxia Telangiectasia Mutada Límite: Animals Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Fármacos Sensibilizantes a Radiaciones / Neoplasias Encefálicas / Proteínas de la Ataxia Telangiectasia Mutada Límite: Animals Idioma: En Año: 2024 Tipo del documento: Article