Your browser doesn't support javascript.
loading
Enantioselective copper-catalyzed azidation/click cascade reaction for access to chiral 1,2,3-triazoles.
Jiang, Ling-Feng; Wu, Shao-Hua; Jiang, Yu-Xuan; Ma, Hong-Xiang; He, Jia-Jun; Bi, Yang-Bo; Kong, De-Yi; Cheng, Yi-Fei; Cheng, Xuan; Deng, Qing-Hai.
  • Jiang LF; The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University,
  • Wu SH; The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University,
  • Jiang YX; The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University,
  • Ma HX; The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University,
  • He JJ; The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University,
  • Bi YB; The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University,
  • Kong DY; The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University,
  • Cheng YF; The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University,
  • Cheng X; The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University,
  • Deng QH; The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University,
Nat Commun ; 15(1): 4919, 2024 Jun 10.
Article en En | MEDLINE | ID: mdl-38858346
ABSTRACT
Chiral 1,2,3-triazoles are highly attractive motifs in various fields. However, achieving catalytic asymmetric click reactions of azides and alkynes for chiral triazole synthesis remains a significant challenge, mainly due to the limited catalytic systems and substrate scope. Herein, we report an enantioselective azidation/click cascade reaction of N-propargyl-ß-ketoamides with a readily available and potent azido transfer reagent via copper catalysis, which affords a variety of chiral 1,2,3-triazoles with up to 99% yield and 95% ee under mild conditions. Notably, chiral 1,5-disubstituted triazoles that have not been accessed by previous asymmetric click reactions are also prepared with good functional group tolerance.