Your browser doesn't support javascript.
loading
Simulating multiple variability in spatially resolved transcriptomics with scCube.
Qian, Jingyang; Bao, Hudong; Shao, Xin; Fang, Yin; Liao, Jie; Chen, Zhuo; Li, Chengyu; Guo, Wenbo; Hu, Yining; Li, Anyao; Yao, Yue; Fan, Xiaohui; Cheng, Yiyu.
  • Qian J; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
  • Bao H; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, 314100, Jiaxing, China.
  • Shao X; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
  • Fang Y; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
  • Liao J; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, 314100, Jiaxing, China.
  • Chen Z; College of Computer Science and Technology, Zhejiang University, Hangzhou, 310013, China.
  • Li C; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
  • Guo W; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, 314100, Jiaxing, China.
  • Hu Y; College of Computer Science and Technology, Zhejiang University, Hangzhou, 310013, China.
  • Li A; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
  • Yao Y; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, 314100, Jiaxing, China.
  • Fan X; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
  • Cheng Y; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, 314100, Jiaxing, China.
Nat Commun ; 15(1): 5021, 2024 Jun 12.
Article en En | MEDLINE | ID: mdl-38866768
ABSTRACT
A pressing challenge in spatially resolved transcriptomics (SRT) is to benchmark the computational methods. A widely-used approach involves utilizing simulated data. However, biases exist in terms of the currently available simulated SRT data, which seriously affects the accuracy of method evaluation and validation. Herein, we present scCube ( https//github.com/ZJUFanLab/scCube ), a Python package for independent, reproducible, and technology-diverse simulation of SRT data. scCube not only enables the preservation of spatial expression patterns of genes in reference-based simulations, but also generates simulated data with different spatial variability (covering the spatial pattern type, the resolution, the spot arrangement, the targeted gene type, and the tissue slice dimension, etc.) in reference-free simulations. We comprehensively benchmark scCube with existing single-cell or SRT simulators, and demonstrate the utility of scCube in benchmarking spot deconvolution, gene imputation, and resolution enhancement methods in detail through three applications.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Simulación por Computador / Programas Informáticos / Perfilación de la Expresión Génica / Transcriptoma Límite: Animals / Humans Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Simulación por Computador / Programas Informáticos / Perfilación de la Expresión Génica / Transcriptoma Límite: Animals / Humans Idioma: En Año: 2024 Tipo del documento: Article