Production and Release of Proinflammatory Mediators by the Cockroach Allergen Bla g 1 via a Shared Membrane-Destabilization Mechanism.
Biochemistry
; 63(14): 1730-1737, 2024 07 16.
Article
en En
| MEDLINE
| ID: mdl-38915291
ABSTRACT
The cockroach allergen Bla g 1 encloses an exceptionally large hydrophobic cavity, which allows it to bind and deliver unsaturated fatty acid ligands. Bla g 1-mediated delivery of naturally occurring (nMix) ligands has been shown to destabilize lipid membranes, contributing to its digestive/antiviral functions within the source organism. However, the consequences of this activity on Bla g 1 allergenicity following human exposure remain unknown. In this work, we show that Bla g 1-mediated membrane disruption can induce a proinflammatory immune response in mammalian cells via two complementary pathways. At high concentrations, the cytotoxic activity of Bla g 1 induces the release of proinflammatory cytosolic contents including damage-associated molecular patterns (DAMPs) such as heat-shock Protein-70 (HSP70) and the cytokine interleukin-1 (IL-1ß). Sublytic concentrations of Bla g 1 enhanced the ability of phospholipase A2 (PLA2) to extract and hydrolyze phospholipid substrates from cellular membranes, stimulating the production of free polyunsaturated fatty acids (PUFAs) and various downstream inflammatory lipid mediators. Both of these effects are dependent on the presence of Bla g 1's natural fatty-acid (nMix) ligands with CC50 values corresponding to the concentrations required for membrane destabilization reported in previous studies. Taken together, these results suggest that mechanisms through which Bla g 1-mediated lipid delivery and membrane destabilization could directly contribute to cockroach allergic sensitization.
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Alérgenos
/
Membrana Celular
/
Cucarachas
Límite:
Animals
/
Humans
Idioma:
En
Año:
2024
Tipo del documento:
Article