Your browser doesn't support javascript.
loading
Prediction of Covalent Metal-Metal Bonding in Cp-M-M'-Nacnac Complexes of Group 2 and 12 Metals (Be, Mg, Ca, Zn, Cd, Hg).
Gosch, Matthew A; Wilson, David.
  • Gosch MA; La Trobe University, Chemistry, AUSTRALIA.
  • Wilson D; La Trobe University, Department of Chemistry and Physics, Kingsbury Drive, 3086, Bundoora, AUSTRALIA.
Chemistry ; : e202402118, 2024 Jun 27.
Article en En | MEDLINE | ID: mdl-38935331
ABSTRACT
Bimetallic CpMM'Nacnac molecules with group 2 and 12 metals (M = Be, Mg, Ca, Zn, Cd, Hg) that contain novel metal-metal bonding have been investigated in a theoretical study of their molecular and electronic structure, thermodynamic stability, and metal-metal bonding. In all cases the metal-metal bonds are characterized as electron-sharing covalent single bonds from natural bond orbital (NBO) and energy-decomposition analysis with natural orbitals of chemical valence (EDA-NOCV) analysis. The sum of [MM'] charges is relatively constant, with all complexes exhibiting a [MM']2+ core. Quantum theory of atoms in molecules (QTAIM) analysis indicates the presence of non-nuclear attractors (NNA) in the metal-metal bonds of the BeBe, MgMg, and CaCa complexes. There is substantial electron density (0.75-1.33 e) associated with the NNAs, which indicates that these metal-metal bonds, while classified as covalent electron-sharing bonds, retain significant metallic character that can be associated with reducing reactivity of the complex. The predicted stability of these complexes, combined with their novel covalent metal-metal bonding and potential as reducing agents, make them appealing targets for the synthesis of new metal-metal bonds.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article