Your browser doesn't support javascript.
loading
Super-enhancer-driven LncRNA PPARα-seRNA exacerbates glucolipid metabolism and diabetic cardiomyopathy via recruiting KDM4B.
Ma, Xiaozhu; Mei, Shuai; Wuyun, Qidamugai; Zhou, Li; Cai, Ziyang; Ding, Hu; Yan, Jiangtao.
  • Ma X; Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.
  • Mei S; Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.
  • Wuyun Q; Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.
  • Zhou L; Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.
  • Cai Z; Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.
  • Ding H; Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China; Key Laboratory of Vascular Aging, Minist
  • Yan J; Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China. Electronic address: jtyan@tjh.tjmu.edu.c
Mol Metab ; 86: 101978, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38950776
ABSTRACT

OBJECTIVE:

Aberrant glucolipid metabolism in the heart is a characteristic factor in diabetic cardiomyopathy (DbCM). Super-enhancers-driven noncoding RNAs (seRNAs) are emerging as powerful regulators in the progression of cardiac diseases. However, the functions of seRNAs in DbCM have not been fully elucidated.

METHODS:

Super enhancers and their associated seRNAs were screened and identified by H3K27ac ChIP-seq data in the Encyclopedia of DNA Elements (ENCODE) dataset. A dual-luciferase reporter assay was performed to analyze the function of super-enhancers on the transcription of peroxisome proliferator-activated receptor α-related seRNA (PPARα-seRNA). A DbCM mouse model was established using db/db leptin receptor-deficient mice. Adeno-associated virus serotype 9-seRNA (AAV9-seRNA) was injected via the tail vein to evaluate the role of seRNA in DbCM. The underlying mechanism was explored through RNA pull-down, RNA and chromatin immunoprecipitation, and chromatin isolation by RNA purification.

RESULTS:

PPARα-seRNA was regulated by super-enhancers and its levels were increased in response to high glucose and palmitic acid stimulation in cardiomyocytes. Functionally, PPARα-seRNA overexpression aggravated lipid deposition, reduced glucose uptake, and repressed energy production. In contrast, PPARα-seRNA knockdown ameliorated metabolic disorder in vitro. In vivo, overexpression of PPARα-seRNA exacerbated cardiac metabolic disorder and deteriorated cardiac dysfunction, myocardial fibrosis, and hypertrophy in DbCM. Mechanistically, PPARα-seRNA bound to the histone demethylase KDM4B (Lysine-specific demethylase 4B) and decreased H3K9me3 levels in the promoter region of PPARα, ultimately enhancing its transcription.

CONCLUSIONS:

Our study revealed the pivotal function of a super-enhancer-driven long noncoding RNA (lncRNA), PPARα-seRNA, in the deterioration of cardiac function and the exacerbation of metabolic abnormalities in diabetic cardiomyopathy, which recruited KDM4B to the promoter region of PPARα and repression of its transcription. This suggests a promising therapeutic strategy for the treatment of DbCM.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: PPAR alfa / Metabolismo de los Lípidos / Cardiomiopatías Diabéticas / ARN Largo no Codificante Límite: Animals Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: PPAR alfa / Metabolismo de los Lípidos / Cardiomiopatías Diabéticas / ARN Largo no Codificante Límite: Animals Idioma: En Año: 2024 Tipo del documento: Article