Your browser doesn't support javascript.
loading
Thermochemical Properties of High Pressure Neodymium Monoxide.
Han, Yifeng; Brugman, Benjamin L; Leinbach, Logan J; Guo, Xin; Leinenweber, Kurt; Navrotsky, Alexandra.
  • Han Y; Navrotsky Eyring Center for Materials of the Universe, School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.
  • Brugman BL; Navrotsky Eyring Center for Materials of the Universe, School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.
  • Leinbach LJ; Eyring Materials Center, Arizona State University, Tempe, Arizona 85287, United States.
  • Guo X; Eyring Materials Center, Arizona State University, Tempe, Arizona 85287, United States.
  • Leinenweber K; Eyring Materials Center, Arizona State University, Tempe, Arizona 85287, United States.
  • Navrotsky A; Navrotsky Eyring Center for Materials of the Universe, School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.
Inorg Chem ; 63(29): 13468-13473, 2024 Jul 22.
Article en En | MEDLINE | ID: mdl-38970479
ABSTRACT
Neodymium monoxide (NdO) is a metastable rare earth oxide material with a unique electronic structure, which has potential applications across various fields such as semiconductors, energy, catalysis, laser technology, and advanced communications. Despite its promising attributes, the thermodynamic properties of NdO remain unexplored. In this study, high pressure, high temperature phases of neodymium monoxide (NdO, with a rocksalt structure) and body-centered cubic (bcc) Nd metal were synthesized at 5 GPa and 1473 K. X-ray photoelectron spectroscopy (XPS) measurements indicate that the Nd 3d peak shifts to higher energy in NdO relative to Nd2O3, suggesting the possibility of complex electronic states in NdO. Formation enthalpies for the reaction 1/3Nd2O3 + 1/3bcc Nd = NdO obtained from high temperature solution calorimetry in molten sodium molybdate and for the reaction dhcp Nd (metal) = bcc Nd (metal) from differential scanning calorimetry are 25.98 ± 8.65 and 5.2 kJ/mol, respectively. Utilizing these enthalpy values, we calculated the pressure-temperature boundary for the reaction 1/3 bcc Nd + 1/3Nd2O3 = NdO, which has a negative P-T slope of -1.68× 10-4 GPa/K. These insights reveal the high pressure behavior of NdO and neodymium metal, underscoring their potential utility in technological applications.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article