Your browser doesn't support javascript.
loading
Using the High-Entropy Approach to Obtain Multimetal Oxide Nanozymes: Library Synthesis, In Silico Structure-Activity, and Immunoassay Performance.
Phan-Xuan, Thuong; Schweidler, Simon; Hirte, Steffen; Schüller, Moritz; Lin, Ling; Khandelwal, Anurag; Wang, Kai; Schützke, Jan; Reischl, Markus; Kübel, Christian; Hahn, Horst; Bello, Gianluca; Kirchmair, Johannes; Aghassi-Hagmann, Jasmin; Brezesinski, Torsten; Breitung, Ben; Dailey, Lea Ann.
  • Phan-Xuan T; Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
  • Schweidler S; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
  • Hirte S; Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
  • Schüller M; Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
  • Lin L; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
  • Khandelwal A; Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06108 Halle, Germany.
  • Wang K; Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
  • Schützke J; Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
  • Reischl M; Light Technology Institute, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany.
  • Kübel C; Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
  • Hahn H; Department of Materials and Earth Sciences, Technical University Darmstadt, Peter-Grünberg-Straße 2, 64287 Darmstadt, Germany.
  • Bello G; Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
  • Kirchmair J; Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
  • Aghassi-Hagmann J; Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
  • Brezesinski T; Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
  • Breitung B; Helmholtz Institute Ulm for Electrochemical Energy Storage, Helmholtzstrasse 11, 89081 Ulm, Germany.
  • Dailey LA; Department of Materials and Earth Sciences, Technical University Darmstadt, Peter-Grünberg-Straße 2, 64287 Darmstadt, Germany.
ACS Nano ; 18(29): 19024-19037, 2024 Jul 23.
Article en En | MEDLINE | ID: mdl-38985736
ABSTRACT
High-entropy nanomaterials exhibit exceptional mechanical, physical, and chemical properties, finding applications in many industries. Peroxidases are metalloenzymes that accelerate the decomposition of hydrogen peroxide. This study uses the high-entropy approach to generate multimetal oxide-based nanozymes with peroxidase-like activity and explores their application as sensors in ex vivo bioassays. A library of 81 materials was produced using a coprecipitation method for rapid synthesis of up to 100 variants in a single plate. The A and B sites of the magnetite structure, (AA')(BB'B'')2O4, were substituted with up to six different cations (Cu/Fe/Zn/Mg/Mn/Cr). Increasing the compositional complexity improved the catalytic performance; however, substitutions of single elements also caused drastic reductions in the peroxidase-like activity. A generalized linear model was developed describing the relationship between material composition and catalytic activity. Binary interactions between elements that acted synergistically or antagonistically were identified, and a single parameter, the mean interaction effect, was observed to correlate highly with catalytic activity, providing a valuable tool for the design of high-entropy-inspired nanozymes.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Entropía Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Entropía Idioma: En Año: 2024 Tipo del documento: Article