Your browser doesn't support javascript.
loading
Mechanistic insights into phosphoactivation of SLAC1 in guard cell signaling.
Qin, Li; Deng, Ya-Nan; Zhang, Xiang-Yun; Tang, Ling-Hui; Zhang, Chun-Rui; Xu, Shi-Min; Wang, Ke; Wang, Mei-Hua; Zhang, Xian-Hui; Su, Min; Xie, Qi; Hendrickson, Wayne A; Chen, Yu-Hang.
  • Qin L; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
  • Deng YN; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Zhang XY; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
  • Tang LH; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Zhang CR; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
  • Xu SM; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Wang K; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
  • Wang MH; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Zhang XH; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
  • Su M; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Xie Q; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
  • Hendrickson WA; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Chen YH; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
Proc Natl Acad Sci U S A ; 121(29): e2323040121, 2024 Jul 16.
Article en En | MEDLINE | ID: mdl-38985761
ABSTRACT
Stomata in leaves regulate gas (carbon dioxide and water vapor) exchange and water transpiration between plants and the atmosphere. SLow Anion Channel 1 (SLAC1) mediates anion efflux from guard cells and plays a crucial role in controlling stomatal aperture. It serves as a central hub for multiple signaling pathways in response to environmental stimuli, with its activity regulated through phosphorylation via various plant protein kinases. However, the molecular mechanism underlying SLAC1 phosphoactivation has remained elusive. Through a combination of protein sequence analyses, AlphaFold-based modeling and electrophysiological studies, we unveiled that the highly conserved motifs on the N- and C-terminal segments of SLAC1 form a cytosolic regulatory domain (CRD) that interacts with the transmembrane domain(TMD), thereby maintaining the channel in an autoinhibited state. Mutations in these conserved motifs destabilize the CRD, releasing autoinhibition in SLAC1 and enabling its transition into an activated state. Our further studies demonstrated that SLAC1 activation undergoes an autoinhibition-release process and subsequent structural changes in the pore helices. These findings provide mechanistic insights into the activation mechanism of SLAC1 and shed light on understanding how SLAC1 controls stomatal closure in response to environmental stimuli.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Transducción de Señal / Arabidopsis / Proteínas de Arabidopsis / Estomas de Plantas Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Transducción de Señal / Arabidopsis / Proteínas de Arabidopsis / Estomas de Plantas Idioma: En Año: 2024 Tipo del documento: Article