Your browser doesn't support javascript.
loading
Visible-Light-Activated Heteroaryl Azoswitches: Toward a More Colorful Future.
Dang, Tongtong; Zhang, Zhao-Yang; Li, Tao.
  • Dang T; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.
  • Zhang ZY; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.
  • Li T; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.
J Am Chem Soc ; 146(29): 19609-19620, 2024 Jul 24.
Article en En | MEDLINE | ID: mdl-38991225
ABSTRACT
Azobenzenes (Ph-N═N-Ph) are known as the most widely studied molecular photoswitches, and the recent rise of azoheteroarenes (Het-N═N-Ph or Het-N═N-Het) offers great opportunities to advance this already mature field. A common limitation is that azo-switches generally require harmful UV light for activation, which hinders their application across various fields. Despite great efforts in developing visible-light azobenzenes over the past few decades, the potential of visible-light heteroaryl azoswitches remains largely unexplored. This Perspective summarizes the state-of-the-art advancements in visible-light heteroaryl azoswitches, covering molecular design strategies, the structure-property relationship, and potential applications. We highlight the distinctive advantages of azoheteroarenes over azobenzenes in the research and development of visible-light switches. Furthermore, we discuss the opportunities and challenges in this emerging field and propose potential solutions to address crucial issues such as spectral red-shift and thermal half-life. Through this Perspective paper, we aim to provide inspiration for further exploration in this field, in anticipation of the growing prosperity and bright future of visible-light azoheteroarene photoswitches.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article