Your browser doesn't support javascript.
loading
Toward Programmable Quantum Processors Based on Spin Qubits with Mechanically Mediated Interactions and Transport.
Fung, F; Rosenfeld, E; Schaefer, J D; Kabcenell, A; Gieseler, J; Zhou, T X; Madhavan, T; Aslam, N; Yacoby, A; Lukin, M D.
  • Fung F; Department of Physics, <a href="https://ror.org/03vek6s52">Harvard University</a>, Cambridge, Massachusetts 02138, USA.
  • Rosenfeld E; Department of Physics, <a href="https://ror.org/03vek6s52">Harvard University</a>, Cambridge, Massachusetts 02138, USA.
  • Schaefer JD; Department of Physics, <a href="https://ror.org/03vek6s52">Harvard University</a>, Cambridge, Massachusetts 02138, USA.
  • Kabcenell A; Department of Physics, <a href="https://ror.org/03vek6s52">Harvard University</a>, Cambridge, Massachusetts 02138, USA.
  • Gieseler J; Department of Physics, <a href="https://ror.org/03vek6s52">Harvard University</a>, Cambridge, Massachusetts 02138, USA.
  • Zhou TX; Department of Physics, <a href="https://ror.org/03vek6s52">Harvard University</a>, Cambridge, Massachusetts 02138, USA.
  • Madhavan T; Harvard John A. Paulson School of Engineering and Applied Sciences, <a href="https://ror.org/03vek6s52">Harvard University</a>, Cambridge, Massachusetts 02138, USA.
  • Aslam N; <a href="https://ror.org/042nb2s44">Massachusetts Institute of Technology</a>, Cambridge, Massachusetts 02139, USA.
  • Yacoby A; Harvard John A. Paulson School of Engineering and Applied Sciences, <a href="https://ror.org/03vek6s52">Harvard University</a>, Cambridge, Massachusetts 02138, USA.
  • Lukin MD; Department of Physics, <a href="https://ror.org/03vek6s52">Harvard University</a>, Cambridge, Massachusetts 02138, USA.
Phys Rev Lett ; 132(26): 263602, 2024 Jun 28.
Article en En | MEDLINE | ID: mdl-38996281
ABSTRACT
Solid-state spin qubits are promising candidates for quantum information processing, but controlled interactions and entanglement in large, multiqubit systems are currently difficult to achieve. We describe a method for programmable control of multiqubit spin systems, in which individual nitrogen-vacancy (NV) centers in diamond nanopillars are coupled to magnetically functionalized silicon nitride mechanical resonators in a scanning probe configuration. Qubits can be entangled via interactions with nanomechanical resonators while programmable connectivity is realized via mechanical transport of qubits in nanopillars. To demonstrate the feasibility of this approach, we characterize both the mechanical properties and the magnetic field gradients around the micromagnet placed on the nanobeam resonator. We demonstrate coherent manipulation of a spin qubit in the proximity of a transported micromagnet by utilizing nuclear spin memory and use the NV center to detect the time-varying magnetic field from the oscillating micromagnet, extracting a spin-mechanical coupling of 7.7(9) Hz. With realistic improvements, the high-cooperativity regime can be reached, offering a new avenue toward scalable quantum information processing with spin qubits.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article