Your browser doesn't support javascript.
loading
Cytotoxicity and microbiological behavior of universal resin composite cements.
Josic, Uros; Teti, Gabriella; Ionescu, Andrei; Maravic, Tatjana; Mazzitelli, Claudia; Cokic, Stevan; Van Meerbeek, Bart; Falconi, Mirella; Brambilla, Eugenio; Mazzoni, Annalisa; Breschi, Lorenzo.
  • Josic U; Department for Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
  • Teti G; Department for Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
  • Ionescu A; Oral Microbiology and Biomaterials Laboratory, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
  • Maravic T; Department for Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
  • Mazzitelli C; Department for Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
  • Cokic S; KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & University Hospitals Leuven (UZ Leuven), Dentistry, Leuven, Belgium.
  • Van Meerbeek B; KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & University Hospitals Leuven (UZ Leuven), Dentistry, Leuven, Belgium.
  • Falconi M; Department for Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
  • Brambilla E; Oral Microbiology and Biomaterials Laboratory, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
  • Mazzoni A; Department for Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
  • Breschi L; Department for Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy. Electronic address: lorenzo.breschi@unibo.it.
Dent Mater ; 2024 Jul 24.
Article en En | MEDLINE | ID: mdl-39054113
ABSTRACT

OBJECTIVES:

To investigate the cytotoxicity on human dental pulp cells (HDPCs) and Streptococcus mutans (S.mutans) biofilm formation on universal resin composite cements (UCs).

METHODS:

Three UCs (RelyX Universal, 3 M Oral Care - RXU; Panavia SA Cement Universal, Kuraray Noritake - PSAU; SoloCem, Coltene - SCM) and one 'gold-standard' multi-step cement (Panavia V5, Kuraray Noritake - PV5) were used following two polymerization protocols (light-cured - LC; self-cured - SC). Cytotoxicity (MTT) tests were performed after 1, 3 and 7 days of direct contact. Carboxy-2',7'-dichlorodihydrofluorescein diacetate was used to detect the release of reactive oxygen species (ROS), and interleukin 6 (IL-6) expression was analyzed by IL-6 proquantum high sensitivity immunoassay. S. mutans biofilms were grown on UCs samples in a bioreactor for 24 h, then adherent viable biomass was assessed using MTT assay. For microbiological procedures, half of UCs samples underwent accelerated aging. Data were statistically analyzed (α = 0.05).

RESULTS:

The highest cytotoxicity was observed for PSAU SC, RXU SC, and PV5 SC at day 1, then for SC RXU after 3 days, and SC PSAU, LC PV5 and SCM after 1-week (p < 0.05). There was no increase in IL-6 expression after 1 day, while it increased depending on the group at 3 and 7 days. The highest ROS expression after 12 h was recorded for PSAU SC, PV5 SC and PV5 LC. Biofilm formation was as follows RXU > > PSAU = PV5 > SCM, while light-curing systematically decreased biofilm formation (≈-33 %). Aging leveled out differences between UCs and between polymerization protocols.

SIGNIFICANCE:

The choice of cement brand, rather than category, and polymerization protocol influence cell viability and microbiological behavior. Light-curing is beneficial for reducing the harmful pulpal effect that UCs may possess.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article