Your browser doesn't support javascript.
loading
Fit-for-purpose WWTP unmanned aerial systems: A game changer towards an integrated and sustainable management strategy.
Dimitriadou, Stavroula; Kokkinos, Petros A; Kyzas, George Z; Kalavrouziotis, Ioannis K.
  • Dimitriadou S; Laboratory of Sustainable Waste Management Technologies, School of Science and Technology, Hellenic Open University, Building D, 1(st) Floor, Parodos Aristotelous 18, 26335, Patras, Greece. Electronic address: s.dimitriadou@eap.gr.
  • Kokkinos PA; Laboratory of Sustainable Waste Management Technologies, School of Science and Technology, Hellenic Open University, Building D, 1(st) Floor, Parodos Aristotelous 18, 26335, Patras, Greece. Electronic address: pkokkin@eap.gr.
  • Kyzas GZ; Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala, Greece. Electronic address: kyzas@chem.duth.gr.
  • Kalavrouziotis IK; Laboratory of Sustainable Waste Management Technologies, School of Science and Technology, Hellenic Open University, Building D, 1(st) Floor, Parodos Aristotelous 18, 26335, Patras, Greece. Electronic address: ikalabro@eap.gr.
Sci Total Environ ; 949: 174966, 2024 Nov 01.
Article en En | MEDLINE | ID: mdl-39069181
ABSTRACT
In the ongoing Anthropocene era, air quality monitoring constitutes a primary axis of European and international policies for all sectors, including Waste Water Treatment Plants (WWTPs). Unmanned Aerial Systems (UASs) with proper sensing equipment provide an edge technology for air quality and odor monitoring. In addition, Unmanned Aerial Vehicle (UAV) photogrammetry has been used in civil engineering, environmental (water) quality assessment and lately for industrial facilities monitoring. This study constitutes a systematic review of the late advances and limitations of germane equipment and implementations. Despite their unassailable flexibility and efficiency, the employment of the aforementioned technologies in WWTP remote monitoring is yet sparse, partial, and concerns only particular aspects. The main finding of the review was the lack of a tailored UAS for WWTP monitoring in the literature. Therefore, to fill in this gap, we propose a fit-for-purpose remote monitoring system consisting of a UAS with a platform that would integrate all the required sensors for air quality (i.e., emissions of H2S, NH3, NOx, SO2, CH4, CO, CO2, VOCs, and PM) and odor monitoring, multispectral and thermal cameras for photogrammetric structural health monitoring (SHM) and wastewater/effluent properties (e.g., color, temperature, etc.) of a WWTP. It constitutes a novel, supreme and integrated approach to improve the sustainable management of WWTPs. Specifically, the developments that a fit-for-purpose WWTP UAS would launch, are fostering the decision-making of managers, administrations, and policymakers, both in operational conditions and in case of failures, accidents or natural disasters. Furthermore, it would significantly reduce the operational expenditure of a WWTP, ensuring personnel and population health standards, and local area sustainability.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article