Your browser doesn't support javascript.
loading
Methylglyoxal reduces resistance exercise-induced protein synthesis and anabolic signaling in rat tibialis anterior muscle.
Tanaka, Masayuki; Kanazashi, Miho; Kondo, Hiroyo; Fujino, Hidemi.
  • Tanaka M; Department of Physical Therapy, Faculty of Health Sciences, Okayama Healthcare Professional University, 3-2-18 Daiku, Kita-ku, Okayama-shi, Okayama, 700-0913, Japan.
  • Kanazashi M; Department of Physical Therapy, Faculty of Human Sciences, Osaka University of Human Sciences, 1-4-1 Shojaku, Settsu-shi, Osaka, 566-8501, Japan.
  • Kondo H; Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe-shi, Hyogo, 654-0142, Japan.
  • Fujino H; Department of Health and Welfare, Faculty of Health and Welfare, Prefectural University of Hiroshima, 1-1 Gakuen- cho, Mihara-shi, Hiroshima, 723-0053, Japan. m-kanazashi@pu-hiroshima.ac.jp.
Article en En | MEDLINE | ID: mdl-39085712
ABSTRACT
Resistance exercise provides significant benefits to skeletal muscle, including hypertrophy and metabolic enhancements, supporting overall health and disease management. However, skeletal muscle responsiveness to resistance exercise is significantly reduced in conditions such as aging and diabetes. Recent reports suggest that glycation stress contributes to muscle atrophy and impaired exercise-induced muscle adaptation; however, its role in the muscle response to resistance exercise remains unclear. Therefore, in this study, we investigated whether methylglyoxal (MGO), a key factor in glycation stress, affects the acute responsiveness of skeletal muscles to resistance exercise, focusing on protein synthesis and the key signaling molecules. This study included 12 8-week-old male Sprague-Dawley rats divided into two groups one received 0.5% MGO-supplemented drinking water (MGO group) and the other received regular water (control group). After 10 weeks, the left tibialis anterior muscle of each rat was subjected to electrical stimulation (ES) to mimic resistance exercise, with the right muscle serving as a non-stimulated control. Muscle protein-synthesis rates were evaluated with SUnSET, and phosphorylation levels of key signaling molecules (p70S6K and S6rp) were quantified using western blotting. In the control group, stimulated muscles exhibited significantly increased muscle protein synthesis and phosphorylation levels of p70S6K and S6rp. In the MGO group, these increases were attenuated, indicating that MGO treatment suppresses the adaptive response to resistance exercise. MGO diminishes the skeletal muscle's adaptive response to ES-simulated resistance exercise, affecting both muscle protein synthesis and key signaling molecules. The potential influence of glycation stress on the effectiveness of resistance exercise or ES emphasizes the need for individualized interventions in conditions of elevated glycation stress, such as diabetes and aging.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article