Your browser doesn't support javascript.
loading
Effect of elemental sulfur on anaerobic ammonia oxidation: Performance and Mechanism.
Zhang, Jing; Wang, Lurong; Li, Haitao; Yu, Jie; Wang, Hongjie.
  • Zhang J; Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China; Biology institute, Hebei academy of science, Shijiazhuang 050081, PR China.
  • Wang L; Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China.
  • Li H; Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China.
  • Yu J; Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China.
  • Wang H; Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China. Electronic address: wanghj
Environ Res ; : 119778, 2024 Aug 16.
Article en En | MEDLINE | ID: mdl-39155040
ABSTRACT
Biological nitrogen removal processes provide effective means to mitigate nitrogen-related issues in wastewater treatment. Previous studies have highlighted the collaborative efficiency between sulfur autotrophic denitrification and Anammox processes. However, the trigger point induced the combination of nitrogen and sulfur metabolism is unclear. In this study, elemental sulfur (S0) was introduced to Anammox system to figure out the performance and mechanism of S0-mediated autotrophic denitrification and Anammox (S0SAD-A) systems. The results showed that the nitrogen removal performance of the Anammox reactor decreased with the increasing concentrations of NH4+-N and NO2--N in influent, denitrification occurred when NH4+-N concentration reached 100 mg/L. At stage ⅳ (150 mg/L NH4+-N), the total nitrogen removal efficiency in S0SAD-A system (95.99%) was significantly higher than that in the Anammox system (77.22%). Throughout a hydraulic retention time, the consumption rate of NH4+-N in S0SAD-A was faster than that in Anammox reactor. And there existed a nitrate-concentration peak in S0SAD-A system. Metagenomic sequencing was performed to reveal functional microbes as well as key genes involved in sulfur and nitrogen metabolism. The results showed that the introduction of S0 elevated the abundance of Ca. Brocadia. Moreover, the relative abundance of Anammox genes, such as hao, hzsA and hzsC were also stimulated by sulfur. Notably, unclassified members in Rhodocyclaceae acted as the primary contributor to key genes involved in the sulfur metabolism. Overall, the interactions between Anammox and denitrification were stimulated by sulfur metabolism. Our study shed light on the potential significance of Rhodocyclaceae members in the S0SAD-A process and disclosed the relationship between anammox and denitrification.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article