Your browser doesn't support javascript.
loading
Photoluminescence Confocal Mapping of a Novel Nd3+/Yb3+: Zn2SiO4 Composite thin film on Si (100) Substrate Utilizing a 980 nm Pumping Source.
Bharadwaj, Mrigankadeep; Gaur, Ankita.
  • Bharadwaj M; School of Energy Sciences and Engineering, IIT Guwahati, Assam, 781039, India.
  • Gaur A; School of Energy Sciences and Engineering, IIT Guwahati, Assam, 781039, India. ankitagaur@iitg.ac.in.
J Fluoresc ; 2024 Aug 22.
Article en En | MEDLINE | ID: mdl-39172326
ABSTRACT
A fixed Nd3+ and varied Yb3+ ion concentration were incorporated in a Zinc-Silicate (SZNYX) composite solution using ex-situ sol-gel solution to fabricate a novel thin film (TF) on Si (100)-substrate. The upconversion luminescence (UCL) spectra of the thin films were measured under 980 nm laser excitation, with the most optimized result for Yb3+ ion concentration of 1.5 mol%. Additionally, a 2-D photoluminescence (PL) confocal mapping of the SZNY15-TF material confirmed uniform PL distribution throughout the space under the same excitation wavelength. Structural characterization via XRD revealed the tetragonal Zn2SiO4 nano-crystalline nature of the film at three distinct annealing temperatures. Morphological characterization using the Field-emission scanning electron Microscope (FESEM) coupled with energy dispersion spectrometer (EDS) affirmed the nanoflower structure and the purity of doping purity in the samples, respectively. These findings collectively confirm the promising UCL properties of the SZNYX-TF samples, suggesting potential applications in photonic.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article