Your browser doesn't support javascript.
loading
Construction of Surface Ruoct─O─Cooct Units With Optimized Cooct Spin States for Enhanced Oxygen Reduction and Evolution.
Yu, Can-Wen; Chen, Zi-Qiang; Xu, Hong-Yi; Ouyang, Ting; Liu, Zhao-Qing.
  • Yu CW; School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Higher Education Mega Center, Guangzhou University, No. 230
  • Chen ZQ; School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Higher Education Mega Center, Guangzhou University, No. 230
  • Xu HY; School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Higher Education Mega Center, Guangzhou University, No. 230
  • Ouyang T; School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Higher Education Mega Center, Guangzhou University, No. 230
  • Liu ZQ; School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Higher Education Mega Center, Guangzhou University, No. 230
Small ; : e2405865, 2024 Aug 24.
Article en En | MEDLINE | ID: mdl-39180457
ABSTRACT
The introduction of noble metal into spinel structure is an effective strategy to develop efficient oxygen evolution/reduction reaction (OER/ORR) catalysts. Herein, surface Cooct is substituted by Ruoct in Rux-Mn0.5Co2.5-xO4/NCNTs by ion-exchange, where presence of Ruoct─O─Cooct unit facilitates electron transfer. This strong electron coupling effect leads downward shift in d-band center and a narrowing of d-p bandgap. The increased charge density of Cooct bridged with Ruoct dioxygen optimizes adsorption of oxygen intermediates (*OH) and occupation of electrons in eg-orbital octahedral. The measured ORR/OER voltage difference is only 0.71 V. The peak power density of assembled zinc-air battery reaches 148.8 mW h cm-2, and energy density at 100 mA cm-2 reaches 813.6 mA h gZn -1, approaching a theoretical value of 820 mA h gZn -1. The catalyst demonstrates stable operation for over 500 h at 10 mA cm-2 and over 200 h at 50 mA cm-2. This work provides new insights to guide fabrication of advanced oxygen electrocatalysts.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article